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ABSTRACT 
The investigation has been done of Raman spectra of mono-graphene oxide (GO); bi-graphene 
oxide and tri-graphene oxide by Hartree Fock calculations interpret available experimental results. 
The models of this detailed analysis expose that the graphene oxide (GO) is rough with rough 
average surface of 0.6 nm and the structure is predominantly amorphous due to distortions from sp3 

C-O bonds. About 40% sp3 bonding was calculated to be present in these sheets with measured O/C 
ratio of 1:5. These sp2 to sp3 bond modifications due to oxidation are also supported by Hartree 
Fock calculations. Besides the Raman spectra, the polarized depolarization ratio and the 
unpolarized depolarization ratio each mono-graphene oxide (GO); bi-graphene oxide and tri-
graphene oxide has been calculated which almost satisfying the graphene oxide available 
literature. It is observed that the Raman spectra are increasing as the number of graphene oxide 
layer.                                                                                                                                                        

.                                                                                       
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INTRODUCTION 
 

Graphene, a one layer of carbon bonded in a honeycomb lattice structure, which has motivated a 
innumerable of research as of its exceptional electrical, mechanical, and thermal properties.[1–4]     
 The graphene can be made by a mechanical cleavage method [1] or grown epitaxially from 
surfaces [5] or by CVD method, [6,7]  that  has a zero-bandgap without semiconducting properties, 
hamper its application in nanoelectronics. So, it is of grand requirement to unlock the bandgap in 
graphene. One ways is to make graphene nanoribbons (GNRs), which have been theoretically 
calculated to be semiconductor with the width reduced down to sub-10 nm.[8,9] This  result in 
semiconductor characteristics come up from the quantum confinement effect in addition to edge 
effect from the small width.[8–10] Modern experimental progress has discovered such properties 
with a great promise for real applications, for example in p-type and n-type graphene field effect 
transistors.[11–13] The GNRs might rival or even replace CNTs in every semiconducting properties 
because the great chirality is needed for CNTs to be metals or semiconductors.[14,15]                        
Reliable manufacture of such nanoribbons is also required for various investigations.[16] So, how 
to build GNRs is solution to their applications. A few techniques for building GNRs have been 



Rashid Nizam                                                              J. of Eng. & Techn. Res., 2014, 2(3):1:14 
______________________________________________________________________________ 

 

2 
 

informed recently.[11,12,17–20] Among them, equally chemically sonicating expandable graphite 
[11] and physically with chemically unzipping CNTs [12,18] show great agree. GNRs with a width 
down to 5 nm have been attained that illustrate outstanding electrical performance [11].  Although, 
new with simple methods are still investigating to produce GNRs for the potential in biology, 
electronics, magnetism, and catalysis applications [16].                                                                         

 
MATERIAL AND METHODS 

 
Model 
The structure of graphene oxide is frequently simplistically imagined to be a graphene sheet bonded 
to oxygen in the form of carboxyl, hydroxyl or epoxy groups. The graphene oxide sheets are 
irregular with an average roughness of 0.6 nm and the structure is primarily amorphous because of 
distortions from the high fraction of sp3 C-O bonds [21]. These graphene oxide films have been 
found about 40% sp3 bonding for O/C ratio of 1:5.In this papers the graphene oxide sheets 
consisting of mono-, bi-, and trilayers can be readily identified in the AFM image shown in Fig 

 .6                                     of grapheme  oxide is 1.6:2.6:3 , and trilayers-, bi-monoThe ratio of . 1[21] 

 

 
 
 

Figure 1 shows mono, bi and tri graphene oxides models layer 
Calculation 

The molecular Hartree-Fock wave function is used to calculate the atomic orbital of molecule 
(graphene oxide) written as in the product (Slater determinant) form of an antisymmetrized of spin-

orbitals, each spin-orbital being a product of a spatial orbital and a spin function (either α or β). 
The term for the Hartree-Fock molecular electronic energy EHF is specified by the variation theorem 

as  

where D is the Slater determinant Hartree-Fock wave function, and  are electrons operator 
and energy operators of Coulomb interaction of electrons with nuclei respectively.                            

    

As   does not include electronic coordinates and D is normalized, thus have 

 The operator  is the sum of two-  electron operators  and one-

electron operators ; so  ,where and 

The Hamiltonian  remain same as the Hamiltonian H for an atom except that  

replaces  in . Hence, the Hartree-Fock energy of a diatomic or polyatomic molecule with only 
closed shells is                                                                                                                                         

iφ
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       (1) 

 

 

 

 
  

where the one-electron-operator symbol was altered from  to . The one- electron core 
Hamiltonian                                                                                                                                             

 
is the addition of the kinetic-energy operator for electron 1 and the potential-energy  operators for 

the attractions between electron 1 and the nuclei;  excludes the  interactions of electron 1 

with the other electrons. The additions over i and j are over the occupied spatials orbitals  of 

the i -electron molecule. In the Coulomb integrals   as well as the exchange integrals , the 
integration goes over the spatial coordinates of  electrons 1 and 2.                                                        

The Hartree-Fock method come acrosss for those orbitals  that minimize the variational integral 

EHF. Obviously, each MO is taken to be normalized: . Moreover, for computational 

convenience one takes the MOs to be orthogonal:   for i≠j. The closed- shell 
orthogonal Hartree-Fock MOs satisfy                                                                                                     

(2a)  

where  is the orbital energy and where the (Hartree-) Fock operator  is (in atomic  units) 
  
)b2( 

 

                                                                                                        
  

where the Coulomb operator  and the exchange operator , are defined by 
 

 
Here  is an arbitrary function that wills integral over definite integrals all space. The first term on 
the right is the operator for the kinetic energy of one electron while the second term is the potential-
energy operators for the attractions between one electron and the nuclei. The Coulomb operator 
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is the potential energy of interaction between electron 1 and a spread-out electron with 

electronic density ; the factor 2 in come about due to there is two electrons in each spatial 
orbital. The exchange operator has no simple physical interpretation but begins from the 
requirement that the wave function be antisymmetric with respect to electron exchange. From the 

Hartree equations, the exchange operators are not present. In  the Hartree-Fock MOs are 

eigenfunctions of the same operator , with the eigenvalues being the orbital energies . The 
orthogonality of the MOs greatly simplifies MO calculations, causing many integrals to vanish.  

The true Hamiltonian operator and wave function involve the coordinates of all n electrons. The 

Hartree-Fock Hamiltonian operator  is a one-electron operator (that is, it involves the coordinates 
of only one electron), and is a one-electron differential equation. This has been indicated in by 

writing  and  as functions of the coordinates of electron 1; of course, the coordinates of any 

electron could have been used. The operator  is peculiar in that it depends on its own eigen 
functions, which are not known initially. Hence the Hartree-Fock equations must be solved by an 
iterative process.                                                                                                                                      

To obtain the expression for the orbital energies  we multiply (2) by and integrate over all 

space. Using the fact that  is normalized and equation (1), we obtain                                                 

 

 

 (3)      
  
  

where , Jij and Kij are above defined in the equations. 
summing up equation  (3) over the n/2 occupied orbitals gives 

 

Work out this equation for  and replacing the result into (1), we obtain the Hartree-Fock 
energy as                                                                                                                                                  

 

Since there are two electrons per MO, the quantity  is the sum of the orbital energies. 
Subtraction of the double sum in (1) avoids counting each inter electronic repulsion twice.                
A feasible calculation of accurate molecular SCF wave functions was Roothaan's 1951 proposal to 

expand the spatial orbitals   as linear combinations of a set of one-electron basis functions         
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)4(  

To precisely represent the MOs , the basis functions  should figure a complete set. This 
necessitates an infinite number of basis functions. But in practice, one must use a finite number b of 

basis functions. If b is large enough with the functions  well chosen, one can represent the MOs 
with negligible error. To avoid confusion, we shall use the letters r, s, t, u to label the basis 

functions x, and the letters i , j , k, l to label the MOs .                                                                       
Substitution of the expansion (4) into the Hartree-Fock equations (2) gives 

  
)5( 

 
Multiplication by x* and integration gives 

  )6(     
 

 
  )7                            (  

  
The equations (6) form a set of b simultaneous linear homogeneous equations in the b unknowns 

 s = 1, 2,..., b, that explain the MO  in (5). For a nontrivial solution, one must have                    
  

 
(9) 

  
  

This is a secular equation whose roots provide the orbital energies . 
After getting the occupied-MO expressions as linear combinations of the basis functions, as in  (4) 
equation. This initial set of MOs is used to compute the Fock operator F from (2b) to (6). The 

matrix elements (7) are computed, and the secular equation (9) is solved to give an initial set of ’s. 

These ’s used to solve (6) for an improved set of coefficients, giving an improved set of MOs, 
which are then used to compute an improved F, and so on. These matrix elements then convert into 
Raman invariants tensor.                                                                                                                         
When single crystals of a material are not available then the symmetries of Raman excitations can 
be studied by measuring the polarization of the scattered light in unoriented samples. Hence one can 
resolve Raman tensor invariant [29] [30] which yield information about the symmetry, although the 
assignment is not always unique.                                                                                                            

Let us assume a phonon with a diagonal Raman tensor with three elements .                     
Furthermore, the scattering configuration in the laboratory frame is (ZZ). To find the Raman 
intensity one integrate as well as average over all possible orientations of the crystal. By Euler's 
angles [31] [32].                                                                                                                                       
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integrating and rearranging yields 

                                 (10) 

with 

 
The result in Eq. (10) embraces for all parallel polarizations of the incoming with outgoing linearly 

polarized light and for every Raman tensor excluding that . For perpendicular linear 

polarization, e.g.,  the integration yields . Now it turn out to be noticeable that the 
symmetry can also the partially presumed from experiments on unoriented materials.                        
 The intensity on unoriented substances pursues directly from the transformation of a tensor under 
rotation. A second-rank tensor can be decomposed with respect to the rotation group into a scalar 
(tensor of rank zero), an antisymmetric matrix (rank one), and a symmetric traceless matrix (rank 
two). These irreducible components have well defined quantum numbers and transformation 
properties under rotation. The matrix element for a fixed orientation is obtained from the Wigner-
Eckart theorem and the integration over all crystal orientations is determined by the tensor 
invariants. Different authors use slightly different invariants in Raman scattering. By Neslor and 
spiror [33] one can define the isotropic invariant                                                                                    

 
the antisymmetric anisotropy 

 
and the symmetric anisotropy 

 
 

where are the elements of the Raman matrix as given in Table 1 for carbon 
nanotubes.                                                                                                                                                

 
A linear combination of the tensor invariants can be expressed in the scattering intensity on an 
unoriented sample in any scattering configuration. For linear parallel ( ) and perpendicular ( ) 
polarization of the incoming and scattered light the intensities are given by (apart from a constant 
factor                                                                                                                                                        
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which is the generalized result of Equation(10). The quotient is known as the depolarization 
ratio . Under Placzek’s polarizability approximation, it is known that the depolarization ratio of a 
totally symmetric vibrational mode is less than 0.75, and that of the other modes equals 0.75. A 
Raman band whose depolarization ratio is less than 0.75 is called a P- depolarization band, and a 
band with a 0.75 depolarization ratio is called a U-depolarization band.                                              
 The Raman intensities for any polarization on arbitrarily oriented systems can be implicit through 
the matrix element for a particular Raman tensor and taking the averaged over Euler's angles. For 
generality, the result of graphene oxide Raman tensor of into any two rank tensor. This 
transformation of tensor are can be prescribed by irreducible spherical tensors, that is a break up 

into the rotation group. The irreducible spherical tensors have quick j and m quantum numbers 
under turning round that can be simply transform according to                                                            

                                                           

where  is the matrix expression of the rotation group (rotation matrices). The rank k tensor can 
reduce into irreducible tensor of ranks 0, 1, 2, 3…k with help of the Clebsch-Gordan coefficients. A 

normalized Raman tensor set are converted into irreducible tensors is given by 

 

 
  
 

  
  
  
 

 

 

In a fixed scattering configuration, the intensity matrix element  is computed through the 
Wigner-Eekart theorem. An average of irreducible spherical tensors over the randomly oriented 

graphene oxide molecules is specified by.                                                                                             

  

 

where  are the Clebsch-Gordan coefficients with the selection rule M = mi – 
m. This gives                                                                                                                                           
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The rotation matrices are orthonormal 

                            (11) 
So, each of the contribution of different irreducible tensors rank J can solve break up. Thus the 
orthonormality of the turning round matrices diminishes to                                                                   

 
 

The sum over p is self-determining of the angular momentum quantum numbers m which formulate 
to be calculated only once for every J under consideration. As the mixed elements in the squared 
sum do not necessarily cancel so care should be taken while adding over p by using orthogonality of 
the rotation matrices in Eq.                                                                                                                      

For    calculation has to sum J = 0, 1, 2 with the irreducible tensors in Equation 
(11). 

  
  

  
RESULT AND DISCUSSION  

  
Raman spectroscopy is a widely used tool for the characterization of carbon products, especially 
considering the fact that conjugated and double carbon-carbon bonds lead to high Raman 
intensities. However, we are aware of only one previous computational study that investigated the 
Raman spectra of oxidized nanotubes modeled by relatively short nanotube segments. This 
geometry introduced imitation features into the vibrational modes, making the interpretation of the 
experimental spectroscopic features somewhat challenging. Since most GO models involve a 
mostly intact hexagonal carbon lattice, placing chemical groups randomly throughout the 2D sheet 
and not on the edges should model the GO structure more accurately.                                                  
The rotational constants in x, y, and z axis in the monolayer graphene oxide are 6.6510239, 
6.0103342 and 3.3347958 (GHz) respectively. Similarly the rotational constants in x, y, and z axis 
in the bi-layer graphene oxide are rotational constants are 1.9728517, 1.8545352 and 
1.6665593(GHz) respectively. Similarly the rotational constants in x, y, and z axis in the tri-layer     
     graphene oxide are rotational constants are 1.11214180, 0.7828646 and 0.7547065 respectively. 
The monolayer graphene oxide, bi-layer graphene oxide, and tri-layer graphene oxide has 35 basis 
function, 105 primitive gaussians, 35 cartesian basis functions, 22 alpha electrons, 22 beta 
electrons; 70 basis functions, 210 primitive gaussians, 70 cartesian basis functions, 44 alpha 
electrons, 44 beta electrons; and 105 basis functions, 315 primitive gaussians,   105 cartesian basis 
function, 66 alpha electrons 66 beta electrons respectively. The nuclear repulsion energy of 
monolayer graphene oxide, bi-layer graphene oxide and tri-layer graphene oxide is 949.4127854629 
Hartrees 242.7200087572 Hartrees and 1947.2886258435 Hartrees respectively. The monolayer 
graphene oxide, bi-layer graphene oxide, and tri-layer graphene oxide has done SCF E(RHF) =  -
297.168946620 A.U. after   26 cycles E(RHF) =  -593.725114254  A.U. after   35 cycles and 
E(RHF) =  -890.189598584  A.U. after   47 cycles with  convergence = 0.5409D-08, 0.3359D-08 
and 0.3608D-08  respectively.                                                                                                                 
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Structured graphite has only a couple of Raman-active bands visible in the spectra (Figure 1), the 
in-phase vibration of the graphite lattice (G band) at 1638.9 cm-1 as well as the (weak) disorder 
band caused by the graphite edges (D band) at approximately 517.369,1033.55 and 1354.75 cm-

1.These monolayer graphene oxide simulated peaks 517.369,1033.55 and 1354.75 cm-1are almost 
observed in graphene oxide experimental work  with one simulated peak 1638.9 cm-1 is observed in 
different papers. [34, 35, 36] The bi-layer graphene oxide simulation peaks obtained are 416.397, 
556.849, 1045.94, 1403.79, 1691.43, and 1971.52 cm-1. The tri layer graphene oxide simulation 
peaks obtained are   415.267, 487.608, 563.46, 855.59, 1004.65, 1372.82, 1420.79, 1582.41, 
1639.02, 1773.94, and 1997.69 cm-1.                                                                                                      
The polarized depolarization ratio and the unpolarized depolarization ratio of the simulated 
monolayer graphene oxide with respect of raman spectra are 0.6012, 0.1519, 0.3484, 0.1724 and 
0.751, 0.2637, 0.5167, 0.2941 respectively. Similarly the polarized depolarization ratio and the 
unpolarized depolarization ratio of the simulated bi-layer graphene oxide with respect of raman 
spectra are 0.5547, 0.2851, 0.4028, 0.7379, 0.6077, 0.3743 and 0.7135, 0.4437, 0.5742, 0.8492, 
0.756, 0.5447 respectively. Similarly the polarized depolarization ratio and the unpolarized 
depolarization ratio of the simulated tri-layer graphene oxide with respect of raman spectra are          
0.3435,0.1673,0.3172,0.5482,0.6949,0.7157,0.234,0.2774,0.3286,0.2425,0.3752 and 
0.5114,0.2866,0.4816,0.7082,0.82,0.8343,0.3792,0.4344,0.4946,0.3904,0.5457 respectively.             
It is observed after simulation that as the number of graphene oxide layers increase, the raman 
spectra also increase due to increase in modes of graphene oxide vibration.                                        

  
 

 
Figure 2 shows Raman spectrum of mono graphene oxide layer 

 

 
Figure 3 shows P-polarization spectrum of mono graphene oxide layer 
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Figure 4 shows U-polarization spectrum of mono graphene oxide layer 

 

 
Figure 5 shows Raman spectrum of bi graphene oxide layer 

 
Figure 6 shows P-polarization spectrum of bi graphene oxide layer 
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Figure 7 shows U-polarization spectrum of bi graphene oxide layer 

 

 
 Figure 8  shows Raman spectrum of tri graphene oxide layer 

 
Figure 9 shows P-polarization spectrum of tri graphene oxide layer 
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Figure 10 shows P-polarization spectrum of tri graphene oxide layer 

  
CONCLUSION 

 
All spectral features are become visible in the Raman spectra of graphene oxide that provide 
important characterization information about graphene oxide, with complementary information 
supplied by ensembles of graphene oxide in graphene oxide bundle. Stress is given both to Raman 
spectroscopy for 1D systems and to the use of Raman spectroscopy to characterize the graphene 
oxide structure, defects, and the various environmental effects encountered by graphene oxide. 
Raman spectroscopy is also closely attached to PL spectroscopy of semiconducting SWNTs, since 
both experimental techniques are strongly sensitive to the transition energies of individual SWNTs 
and graphene oxide, to their electronic density of states, and to their interactions. Grouping of 
transport and other experiments with Raman spectroscopy will be highly desirable to further our 
understanding of the electronic and vibrational structure of graphene oxide.                                         
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