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ABSTRACT

The investigation has been done of Raman spectra of mono-graphene oxide (GO); bi-graphene
oxide and tri-graphene oxide by Hartree Fock cal culations interpret available experimental results.
The models of this detailed analysis expose that the graphene oxide (GO) is rough with rough
average surface of 0.6 nmand the structure is predominantly amorphous due to distortions from sp
C-O bonds. About 40% sp® bonding was calculated to be present in these sheets with measured O/C
ratio of 1:5. These sp® to sp° bond modifications due to oxidation are also supported by Hartree
Fock calculations. Besides the Raman spectra, the polarized depolarization ratio and the
unpolarized depolarization ratio each mono-graphene oxide (GO); bi-graphene oxide and tri-
graphene oxide has been calculated which almost satisfying the graphene oxide available
literature. It is observed that the Raman spectra are increasing as the number of graphene oxide
layer.
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INTRODUCTION

Graphene, a one layer of carbon bonded in a hondydattice structure, which has motivated a
innumerable of research as of its exceptional etatt mechanical, and thermal properties.[1-4]
The graphene can be made by a mechanical cleavagigod [1] or grown epitaxially from
surfaces [5] or by CVD method, [6,7] that hasseozbandgap without semiconducting properties,
hamper its application in nanoelectronics. Sos ibfi grand requirement to unlock the bandgap in
graphene. One ways is to make graphene nanorib{@N&s), which have been theoretically
calculated to be semiconductor with the width redudown to sub-10 nm.[8,9] This result in
semiconductor characteristics come up from the mmarconfinement effect in addition to edge
effect from the small width.[8—10] Modern experintenprogress has discovered such properties
with a great promise for real applications, for repée in p-type and n-type graphene field effect
transistors.[11-13] The GNRs might rival or eveplaee CNTs in every semiconducting properties
because the great chirality is needed for CNTstmbtals or semiconductors.[14,15]

Reliable manufacture of such nanoribbons is algaired for various investigations.[16] So, how
to build GNRs is solution to their applications.féw techniques for building GNRs have been
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informed recently.[11,12,17-20] Among them, equalhemically sonicating expandable graphite
[11] and physically with chemically unzipping CN[12,18] show great agree. GNRs with a width
down to 5 nm have been attained that illustratstantling electrical performance [11]. Although,
new with simple methods are still investigating pwduce GNRs for the potential in biology,
electronics, magnetism, and catalysis applicatjihk

MATERIAL AND METHODS

M odel

The structure of graphene oxide is frequently sistighlly imagined to be a graphene sheet bonded
to oxygen in the form of carboxyl, hydroxyl or epogroups. The graphene oxide sheets are
irregular with an average roughness of 0.6 nm aedstructure is primarily amorphous because of
distortions from the high fraction of $£-O bonds [21]. These graphene oxide films hawenbe
found about 40% Spbonding for O/C ratio of 1:5.In this papers thegtene oxide sheets
consisting of mono-, bi-, and trilayers can be igadentified in the AFM image shown in Fig
1[21]. The ratio ofmono, bi-, and trilayerof grapheme oxide is 1.6:2.653 \

Figure 1 shows mono, bi and tri graphene oxides models layer

Calculation
The molecular Hartree-Fock wave function is usechlioulate the atomic orbital of molecule
(graphene oxide) written as in the product (Sldegerminant) form of an antisymmetrized of spin-

orbitals, each spin-orbital being a product of atish orbital? and a spin function (eitheor ).
The term for the Hartree-Fock molecular electrariergy FRris specified by the variation theorem
. o =(D|H, +Vy,|D)

N

where D is the Slater determinant Hartree-Fock wawnetion, Hq andVNN are electrons operator
and energy operatorsof Coulomb interaction of electrons with nuclei pestively.

VN N

As does not include electronic coordinates and idD normalized, thus have

<D|VNN| D) =Viw <D| D> =V The operatonj'Iel is the sum of two- electron opesag) and one-

2 1
A 1= £ - f=-=02-),2,/r, A
electron operators' ; soHe' a Z‘ f +Z iz > Y Where 2 z a%d_]/r”

H

The Hamiltonian"'¢ remain same as the HamiltonianoH &n atom except thaZ”Z”/ri”

replacesza inf

closed shells is

. Hence, the Hartree-Fock energydéimmic or polyatomic molecule with only

2
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n/2 n/2 n/2
Ene = 22 H™ +ZZ (2‘]ij - Kij )+ Vi
i=1 i=1 j=1 (1)

H™ = (@(0|H @] @)
=@ -5 0 -3 2, /nlg @)

J; =g )Y |9 1y (2)
K; =(@@g )|¥r Lo Or (2)

where the one-electron-operator symbol was altéad F to H"@ . The one- electron core
Hamiltonian

7 core — 1 Za

He (@) =-=07-> =«

2 7 [,
is the addition of the kinetic-energy operator ébectron 1 and the potential-energy operators for
the attractions between electron 1 and the nuHecci)Ee(l) excludes the interactions of electron 1
with the other electrons. The additions over i pate over then/2 occupied spatials orbitfls  of

the i -electron molecule. In the Coulomb integrgiis as well as the exchange integrrﬁﬁé , the
integration goes over the spatial coordinateslettemns 1 and 2.

The Hartree-Fock method come acrosss for thoséatsf that minimize the variational integral
Exr. Obviously, each MO is taken to be normalizgz(@.(l)m(l)> =1 ardbver, for computational
convenience one takes the MOs to be orthogongﬂ(l)m(l»z 0 or if. The closed- shell

orthogonal Hartree-Fock MOs satisfy
FOa@) =59 @) (2a)

where® s the orbital energy and where the (Haf}ieeck operatorIE is (in atomic units)

- ~ n2 A 20
FOQ=H" @)+ [2), 1)-K, @) @

=1

7} core — 1 Za
H (1)=—§Df—zr—
a g

A A

where the Coulomb operat(‘)Jn' and the exchange cme}ﬁat, are defined by

A 2 1
Jf@=fflgE) —av,
12
Here T isan arbitrary function that wills integoader definite integrals all space. The first term o
the right is the operator for the kinetic energyné electron while the second term is the potentia
energy operators for the attractions between oeetreh and the nuclei. The Coulomb operator
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A

J) (1) is the potential energy of interaction between tebec 1 and a spread-out electron with

2
electronic densitym(z)| ; the factor 2 in come about ttuthere is two electrons in each spatial
orbital. The exchange operator has no simple phlsicterpretation but begins from the
requirement that the wave function be antisymmetiit respect to electron exchange. From the

Hartree equations, the exchange operators are msemnt. In® the Hartree-Fock MOs are

eigenfunctions of the same opera‘t:or , with the eigkres being the orbital energiges . The
orthogonality of the MOs greatly simplifies MO calations, causing many integrals to vanish.
The true Hamiltonian operator and wave functionolag the coordinates of all n electrons. The

Hartree-Fock Hamiltonian operatdr  is a one-el@ctoperator (that is, it involves the coordinates
of only one electron), and is a one-electron défifitial equation. This has been indicated in by

A

writing F and % as functions of the coordinates @cton 1; of course, the coordinates of any

electron could have been used. The operdtor iglipean that it depends on its own eigen

functions, which are not known initially. Hence tHartree-Fock equations must be solved by an
iterative process.

To obtain the expression for the orbital energﬁ‘ewe multiply (2) byqq @) and integrate over all

space. Using the fact th% is normalized and eguét), we obtain
& = [¢ F Qg (v,

& =(q@[A@g@)+> (e 0, Ao W)-(2 @K, dr @)
& = Hiicore + f(z‘]ij - Kij )
3)

where Hi , yand K; are above defined in the equations.

summing up equation (3) over the n/2 occupiedtalbpives
n/2 n2 n/2n/2
Z‘gi = Z Hi?ore +ZZ(2‘]ij - Kij )
i=1 i=1 i=1 j=1

Work out this equation forZiHii and replacing the resub (1), we obtain the Hartree-Fock
energy as
n/2 n/2 n/2

Ene = 225} _zz (2Jij -K; )+ Viw
i=1

i=1 j=1

Since there are two electrons per MO, the qua%Ey"gi is the sum of the orbital energies.
Subtraction of the double sum in (1) avoids counteach inter electronic repulsion twice.
A feasible calculation of accurate molecular SCvevlunctions was Roothaan's 1951 proposal to

expand the spatial orbitafd as linear combinatioha set of one-electron basis functiéns
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b 4
44'=§ch5 @

To precisely represent the MO% | the basis funstioshould figure a complete set. This
necessitates an infinite number of basis functiBuos.in practice, one must use a finite number b of

basis functions. If b is large enough with the fiomts % well chosen, one can represent the MOs
with negligible error. To avoid confusion, we shale the letters r, s, t, u to label the basis

functions x, and the letters i, j , k, | to lalieé MOs ¢ .
Substitution of the expansion (4) into the HartFeek equations (2) gives

> e FX =6 CoX, ©)

Multiplication by x* and integration gives
b
ZCsi(Frs_‘gS ) =0,r=12,..b
s=1

1=Trs

©

=

Fo=(x|F[x).8, =(x|x)

7

The equations (6) form a set of b simultaneousalir@mogeneous equations in the b unknowns

% s =1, 2., b, that explain the mé in (5). Fornontrivial solution, one must have

det(Frs - é‘I STS ): O
(9)

This is a secular equation whose roots providethéal energie§i
After getting the occupied-MO expressions as lirmanbinations of the basis functions, as in (4)
equation. This initial set of MOs is used to congptlie Fock operator F from (2b) to (6). The

matrix elements (7) are computed, and the secqlzaten (9) is solved to give an initial sefof s.

Thes€ s used to solve (6) for an improved set efffcments, giving an improved set of MOs,
which are then used to compute an improved F, armhs These matrix elements then convert into
Raman invariants tensor.

When single crystals of a material are not ava@lahkn the symmetries of Raman excitations can
be studied by measuring the polarization of théted light in unoriented samples. Hence one can
resolve Raman tensor invariant [29] [30] which gieiformation about the symmetry, although the
assignment is not always unique.

Let us assume a phonon with a diagonal Raman tevigothree elementd * &% 85,

Furthermore, the scattering configuration in thbolatory frame is (ZZ). To find the Raman
intensity one integrate as well as average ovepadkible orientations of the crystal. By Euler's
angles [31] [32].

1 J~77,2rr,2rr

52 |q.R.eS|2d‘Pd¢ sinvdu

I
2z 0

5
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sing sinv \( a, sing siw
L, =$ ["( | cosp sirv a, cog sin|) dwdg siadv
cosv ay cow
integrating and rearranging yields
45 vy
“ 45 (10)

E':}(a1+a2+a3)
3 with

o1 2 2 2
Ve ZE[(al_aZ) +(a,-a,) +(a,-a) }
The result in Eq. (10) embraces for all paralldapaations of the incoming with outgoing linearly

12
polarized light and for every Raman tensor exclgdimat Y's. For perpendicular linear
T
polarization,e.g., e the integration yieldsXZ 45 | Now it turn out to be netible that the
symmetry can also the partially presumed from eagrpants on unoriented materials.
The intensity on unoriented substances pursuesttlirfrom the transformation of a tensor under
rotation. A second-rank tensor can be decompos#drespect to the rotation group into a scalar
(tensor of rank zero), an antisymmetric matrix krame), and a symmetric traceless matrix (rank
two). These irreducible components have well defimpiantum numbers and transformation
properties under rotation. The matrix element fdixad orientation is obtained from the Wigner-
Eckart theorem and the integration over all crysidentations is determined by the tensor
invariants. Different authors use slightly differenvariants in Raman scattering. By Neslor and
spiror [33] one can define the isotropic invariant

E:%(axx+ayy +a,)

the antisymmetric anisotropy
3 2 2 2
Vas :Z[(axy _aw) (@, ~as) +(ayz _azy) }
and the symmetric anisotropy

=3l (oma,) (e, e )+ -a ) [ (o) (@, ) (e, v, )

wherei ("J :x,y,z) are the elements of the Raman matrix as gineiable 1 for carbon
nanotubes.

Au_g__; _ A?[gj EH}:] Eif_;_-] E‘?fl,.r,:J E.?{;:'i
a 0 0 0 ¢ 0 0 0 ¢ 0 0 0 0 f 0 -f 0 0
0 a 0 - 0 0 0 0 0 0 0 - f 0 0 0 f 0O
0 0 b 0 00/ \d 00/ \0o 4 0/ \0 00 0 0 0

A linear combination of the tensor invariants can &xpressed in the scattering intensity on an
unoriented sample in any scattering configuratior. linear parallel [ ) and perpendiculaf!( )
polarization of the incoming and scattered lighd thtensities are given by (apart from a constant
factor
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|, =450 + 472 |, =32 +5/2

ID

which is the generalized result of Equation(10)e Tuotient ly is known as the depolarization
ratio ¥ . Under Placzek’s polarizability approximatjdnis known that the depolarization ratio of a
totally symmetric vibrational mode is less than5).@nd that of the other modes equals 0.75. A
Raman band whose depolarization ratio is less thah is called a P- depolarization band, and a
band with a 0.75 depolarization ratio is called a -ddpolarization band.
The Raman intensities for any polarization ontaabily oriented systems can be implicit through
the matrix element for a particular Raman tensar taking the averaged over Euler's angles. For
generality, the result of graphene oxide Ramanotersd into any two rank tensor. This
transformation of tensor are can be prescribedriegucible spherical tensors, that is a break up

(i)
into the rotation group. The irreducible spherimisorsTm have quick j and guantum numbers
under turning round that can be simply transform coading to

=X T00.60
p

(i)
WhereD is the matrix expression of the rotation groupdtion matrices). The rank k tensor can
reduce into irreducible tensor of ranks 0, 1, 2,K3with help of the Clebsch-Gordan coefficients. A

normalized Raman tens&® =T +T® +T(?

1
TO(O) - _g(axx ta,, +a,)

set are converted intdunible tensors is given by

To(l) :i(axy _aw)

2

T = [(a,-a.)%(a, -a,)]

T :_—[(azx +a,)x(a, +a'yz)]
1 :

T ZE[(GXX -a,,)*i(a, +a'yx)]

T :i(ZGZZ—aXX—aW)

J6

In a fixed scattering configuration, the intensigtrix element] LS is computed through the
Wigner-Eekart theorenn average of irreducible spherical tensors overréimdomly oriented
graphene oxide molecules is specified by.

2
lsOlgRe[=[>eT" ¢
J

Q
2
lis =J{JZM<Jim \Rﬂ”\%%}} dw
Q )

are the Clebsch-Gordan coefficients with the smlratuleM = m, —

dw

where (J‘JS ~mm[J-M )
m. This gives
7
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=[] {30, mm im0 ) o

Q p
The rotation matrices are orthonormal

(i) ggp= 2
[ D! Digi 0= == 91y Ok O
Q Jl (11)
So, each of the contribution of differeinteducible tensorsank J can solve break up. Thus the

orthonormality of the turning round matrices dinsimes to

1 0 (33, ~mmyfa[m, -m])' S [T0]
p

The sum over p is self-determining of the angulammantum quantum numbers m which formulate
to be calculated only once for every J under caratibn. As the mixed elements in the squared
sum do not necessarily cancel so care should lea takile adding over p by using orthogonality of
the rotation matrices in Eq.
> [T(J)T
pL P has to sudh= 0, 1, 2 with the irreducible tensors in Equation
(112).

J
For 'Lts calculation

RESULT AND DISCUSSION

Raman spectroscopy is a widely used tool for theraxtterization of carbon products, especially
considering the fact that conjugated and doublébaracarbon bonds lead to high Raman
intensities. However, we are aware of only one iptess computational study that investigated the
Raman spectra of oxidized nanotubes modeled bytivelya short nanotube segments. This
geometry introduced imitation features into therailonal modes, making the interpretation of the
experimental spectroscopic features somewhat cigatlg. Since most GO models involve a
mostly intact hexagonal carbon lattice, placingnstwal groups randomly throughout the 2D sheet
and not on the edges should model the GO struntore accurately.
The rotational constants in x, y, and z axis in thenolayer graphene oxide are 6.6510239,
6.0103342 and 3.3347958 (GHz) respectively. Siyildre rotational constants in x, y, and z axis
in the bi-layer graphene oxide are rotational camst are 1.9728517, 1.8545352 and
1.6665593(GHz) respectively. Similarly the rotaiboonstants in x, y, and z axis in the tri-layer
graphene oxide are rotational constants drk214180, 0.7828646 and 0.75470@&Sspectively.
The monolayer graphene oxide, bi-layer graphendepxand tri-layer graphene oxide has 35 basis
function, 105 primitive gaussians, 35 cartesianisbdsnctions, 22 alpha electrons, 22 beta
electrons; 70 basis functions, 210 primitive gaarssi 70 cartesian basis functions, 44 alpha
electrons, 44 beta electrons; and 105 basis fumti®l5 primitive gaussians, 105 cartesian basis
function, 66 alpha electrons 66 beta electrons easpely. The nuclear repulsion energy of
monolayer graphene oxide, bi-layer graphene oxmdeta-layer graphene oxide is 949.4127854629
Hartrees 242.7200087572 Hartrees and 1947.288635BBtrees respectively. The monolayer
graphene oxide, bi-layer graphene oxide, and yefaraphene oxide has done SCF E(RHF) = -
297.168946620 A.U. after 26 cycles E(RHF) = -3983114254 A.U. after 35 cycles and
E(RHF) = -890.189598584 A.U. after 47 cycleshwiconvergence = 0.5409D-08, 0.3359D-08
and 0.3608D-08 respectively.
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Structured graphite has only a couple of Ramarvadiands visible in the spectra (Figure 1), the
in-phase vibration of the graphite lattice (G baati}1638.9 cri as well as the (weak) disorder
band caused by the graphite edges (D band) at dpmately 517.369,1033.55 and 1354.75 cm
! These monolayer graphene oxide simulated peak$69,2033.55 and 1354.75 ¢are almost
observed in graphene oxide experimental work with simulated peak 1638.9 ¢is observed in
different papers. [34, 35, 36] The bi-layer graphexide simulation peaks obtained are 416.397,
556.849, 1045.94, 1403.79, 1691.43, and 1971.52. &he tri layer graphene oxide simulation
peaks obtained are  415.267, 487.608, 563.46,5853.004.65, 1372.82, 1420.79, 1582.41,
1639.02, 1773.94, and 1997.69tm

The polarized depolarization ratio and the unpoé&i depolarization ratio of the simulated
monolayer graphene oxide with respect of ramantspece 0.6012, 0.1519, 0.3484, 0.1724 and
0.751, 0.2637, 0.5167, 0.2941 respectively. Siyiline polarized depolarization ratio and the
unpolarized depolarization ratio of the simulatedalger graphene oxide with respect of raman
spectra are 0.5547, 0.2851, 0.4028, 0.7379, 0.60.B743 and 0.7135, 0.4437, 0.5742, 0.8492,
0.756, 0.5447 respectively. Similarly the polarizddpolarization ratio and the unpolarized
depolarization ratio of the simulated tri-layer gfnane oxide with respect of raman spectra are
0.3435,0.1673,0.3172,0.5482,0.6949,0.7157,0.23747@,0.3286,0.2425,0.3752 and
0.5114,0.2866,0.4816,0.7082,0.82,0.8343,0.37924@,831946,0.3904,0.5457 respectively.

It is observed after simulation that as the numifegraphene oxide layers increase, the raman
spectra also increase due to increase in modes Hphgne oxide vibration.
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Figure 2 shows Raman spectrum of mono graphene oxide layer
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Figure 3 shows P-polarization spectrum of mono graphene oxide layer
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Figure 4 shows U-polarization spectrum of mono graphene oxide layer
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Figure 5 shows Raman spectrum of bi graphene oxide layer
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Figure 6 shows P-polarization spectrum of bi graphene oxide layer
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Figure 7 shows U-polarization spectrum of bi graphene oxide layer
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Figure 8 shows Raman spectrum of tri graphene oxide layer
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Figure 9 shows P-polarization spectrum of tri graphene oxide layer
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Figure 10 shows P-polarization spectrum of tri graphene oxide layer

CONCLUSION

All spectral features are become visible in the Bamgpectra of graphene oxide that provide
important characterization information about graghexide, with complementary information
supplied by ensembles of graphene oxide in grapbgite bundle. Stress is given both to Raman
spectroscopy for 1D systems and to the use of Rapactroscopy to characterize the graphene
oxide structure, defects, and the various environtaleeffects encountered by graphene oxide.
Raman spectroscopy is also closely attached topBttsoscopy of semiconducting SWNTSs, since
both experimental techniques are strongly sensiouiie transition energies of individual SWNTs
and graphene oxide, to their electronic densitystates, and to their interactions. Grouping of
transport and other experiments with Raman spedpyswill be highly desirable to further our
understanding of the electronic and vibrationaldtire of graphene oxide.
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