Available online at www.scientiaresearchlibrary.com

Scientia Research Library

ISSN 2348-0408 USA CODEN: JACOGN

Journal of Applied Chemistry, 2014, 2 (6): 14-19 (http://www.scientiaresearchlibrary.com/arhcive.php)

Kinetic parameters from thermogravimetric analysis of Mn(II) complex with 5-amino-1,2,3,4-thiatriazole.

U.N.Verma*, Supriya kumari and Vaishali Anand

University Department of Chemistry, Magadh University, Bodhgaya-824234, INDIA

ABSTRACT

Mn(II) acetate forms 1:2 complex with 5-amino-1,2,3,4-thiatriazole. It undergoes two steps decomposition. Kinetic parameters like apparent activation energy, frequency factor, activation entropy and order of reaction have been determined employing the graphical method of Freeman-Carroll and Doyle method as modified by Zsako introducing standard deviation in the calculation.

Keywords: solid state kinetics, thermogravimetric analysis, 5-amino-1,2,3,4-thiatriazole.

INTRODUCTION

Thermogravimetric analysis is a continuous non-isothermal method which has many advantages over currently used isothermal methods. Thermal analysis technique is becoming useful tool in different field of study such as chemical science, polymer science, biological science, medical science¹⁻⁸. Transition metal complexes have been used as antifungal⁹, antibacterial¹⁰, antitumour¹¹, antiviral¹², hypotensive¹³. The thermal kinetics and decomposition products of the complex are apparently of significance in understanding the biochemistry of the compound.

The basis of the calculations of the kinetic data from a T.G curve is based on the formal kinetic equation $-dx/dt = kx^n$ where x is the amount of sample undergoing reaction ,n is the order of reaction and k is specific reaction rate constant and the latter's dependence of temperature and is expressed as k=A e^{-E/RT}.

In this paper kinetics of thermal decomposition of complex of Mn(II) with 5-amino-1,2,3,4-thiatriazole has been investigated and the kinetic parameters computed using graphical method of Freeman-Carroll¹⁴ and Doyles¹⁵ method as modified by Zsako¹⁶.

MATERIALS AND METHODS

Ligand 5-amino-1,2,3,4-thiatriazole is prepared by the diazotization of thiosemicarbazide. To an ice cold solution of 20gram of thiosemicarbazide in 95 ml of 2.2N HCl, 150ml ice cold NaNO₂ solution (14.7 gram NaNO₂) was added in 50 ml portion. The product was collected washed with ice cold water, recrystallised with methyl alcohol and dried in vacuum. The colorless needle shaped crystal had melting point of 136 °C with slight explosion. Complex was prepared by refluxing ligand solution in ethanol and Mn(II) acetate in hot ethanol. A brick red precipitate obtained was filtered, washed with ethanol and dried over anhydrous CaCl₂ in desiccators. Thermogram was recorded by "NETZSCH" simultaneous thermal analyzer STA-409 recorder.

RESULTS AND DISCUSSION

Second stage decomposition of complex was selected to study the kinetic parameters. The T.G. curve and data thus obtained has been used to calculate order of reaction, activation energy using Freeman and Carroll method. The existing weight of complex at equal temperature interval i.e. 10° C was noted. A linear plot was obtained when $\Delta \log dw/dt/\Delta \log w_r$ versus $\Delta \log T^{-1}x 10^{-3}/\Delta \log w_r$ was plotted. Where $w_r = w_c - w_t$, $w_c =$ weight loss at completion of the reaction. $W_t =$ total weight loss up to time t. The line intercepted at 1.10. The values in turn are suggestive of order of reaction1.0 and activation energy19.87397 kcal/mol using E_a =slope 2.303R.

<u>Table I</u> Data obtained by Freeman and Carroll method for the complex:- [Mn(5-ATTZ)(CH ₃ COO) ₂]					
Serial no	Temperature	Weight left	$\Delta \log(dw/dt)$	$\frac{\Delta \log T^{-1} x 10^{-3}}{\Delta \log w}$	
			$\Delta \log d w_r$	Δlogw _r	
1	190	2.92	-17.11139	3.67683	
2	200	2.87	0.000000	2.23063	
3	210	2.79	-9.16306	1.96441	
4	220	2.69	-3.27894	0.09016	
5	230	2.55	-3.24164	0.89466	
6	240	2.37	-1.65829	0.58875	
7	250	2.27	6.16709	0.90064	
8	260	2.21	8.25571	1.33484	
9	270	2.12	-4.02873	1.03117	
10	280	1.97	-2.63101	0.75314	
11	290	1.74	-1.07304	0.43334	
12	300	1.45	-0.24152	0.07437	

Initial weight at 170° C = 3.00mg

Final weight at $310^{\circ}C = 1.27mg$

These values were compared with the method of Doyle as modified by Zsako. Doyle's equation is $F(\alpha) = ZE/Rq p(x)$

W here Z is frequency factor, E is the activation energy, R is the gas constant, q is the heating rate and

 $p(x) = -\int_{\infty}^{\infty} e^{-u}/u^2 du$ have been calculated within limit ∞ to x and tabulated by Doyle's for x values using the above equation .Log ZE/Rq = log F(α)- log p(x) =B where B depends upon the nature of the compound studied and upon the heating rate.

The log $F(\alpha)$ values are calculated for different temperature covering the range 493k to 613k for the assumed order of reaction as b=0,1 and 2 after calculating the α values for each temperature with relation

$$\alpha = w_0 - w_t / w_0 - w_f$$

Here w_0 , w_t and w_f are the initial, actual, and final weights of the sample respectively.

The value of \overline{B}_0 , \overline{B}_1 and \overline{B}_2 have been calculated in the present case from the equation above with the help of the data $F(\alpha)$ and $-\log p(x)$ for zero, first and second order of reaction respectively.

 $\begin{array}{ll} b=0; & B_0=\log{\left(\alpha\right)}-\log{p(x)}\\ b=1 & B_1=\log{\left(\ln{1}/1{\text{-}}\alpha\right)}-\log{p(x)}\\ b=2; & B_2=\log{\left(\alpha/1{\text{-}}\alpha\right)}-\log{p(x)} \end{array}$

	Table II					
	Data of log F(α) values for the complex [Mn(5-ATTZ)(CH ₃ COO) ₂]					
	(Calculation at	different ten	perature		
Serial no	Temperature(⁰ C)	Weight	α=w ₀ -	Loga	log(ln1/1-	log(
		left	w_t/w_0-w_t		α)	α /1-α)
1	180	2.97	0.01734	-1.76092	-1.75713	-1.75333
2	190	2.92	0.04624	-1.33496	-1.32472	-1.31439
3	200	2.87	0.07514	-1.12410	-1.10725	-1.09018
4	210	2.79	0.12139	-0.91583	-0.88803	-0.85962
5	220	2.69	0.17919	-0.74668	-0.70451	-0.66093
6	230	2.55	0.26012	-0.58483	-0.52106	-0.45400
7	240	2.37	0.36416	-0.43871	-0.34408	-0.24205
8	250	2.27	0.42197	-0.37472	-0.26112	-0.13668
9	260	2.21	0.45665	-0.34042	-0.21467	-0.07550
10	270	2.12	0.50867	-0.29356	-0.14835	0.01506
11	280	1.97	0.59538	-0.22521	-0.04345	0.16774
12	290	1.74	0.72832	-0.13768	0.11499	0.42827
13	300	1.45	0.89595	-0.04771	0.35467	0.93506

Initial weight at 170°C =3.00mg

Final weight at 310° C =1.27mg

In each case of the \overline{B}_0 , \overline{B}_1 and \overline{B}_2 arithmetical mean and ∂ (standard deviation) was obtained using

$$\partial = \sqrt{(\overline{B}_i - B)^2/r}$$

Table III							
Calculation of I	Calculation of B ₀ for different activation energies and ∂_0 values at different temperature						
	for the complex [Mn(5-ATTZ)(CH ₃ COO) ₂]						
Serial no	Temperature(⁰ C)	12 kcal	14 kcal	16 kcal			
1	180	6.33508	7.42508	8.50008			
2	190	6.61804	7.69004	8.74304			
3	200	6.69390	7.73990	8.77590			
4	210	6.76717	7.80117	8.81417			
5	220	6.81132	7.82232	8.81932			
6	230	6.85317	7.84717	8.82617			
7	240	6.87829	7.85529	8.82029			
8	250	6.83128	7.79028	8.73828			
9	260	6.75458	7.70158	8.63158			
10	270	6.69544	7.62444	8.24044			

11	280	6.66179	7.57779	8.47679
12	290	6.65232	7.55032	8.43632
13	300	6.64529	7.53529	8.40429
14	$\overline{\boldsymbol{B}}_0$	6.70751	7.68928	8.63282
15	$\widehat{\mathcal{O}}_0$	0.13539	0.13158	0.19029

Table IV					
Calculation of	f B ₁ for different activation en	ergies and ∂_1 val	ues at different	temperature for	
	the complex [Mn((5-ATTZ)(CH ₃ C	COO) ₂]		
Serial no	Temperature(⁰ C)	16 kcal	18 kcal	20 kcal	
1	180	8.50387	9.57087	10.62287	
2	190	8.75328	9.79328	10.82828	
3	200	8.79275	9.81575	10.82775	
4	210	8.84197	9.84297	10.83897	
5	220	8.86149	9.84449	10.81849	
6	230	8.88994	9.85594	10.81194	
7	240	8.91492	9.86392	10.80292	
8	250	8.85188	9.78288	10.70388	
9	260	8.75733	9.67033	10.57933	
10	270	8.38565	9.58665	10.48265	
11	280	8.65855	9.54655	10.42455	
12	290	8.68899	9.56499	10.42899	
13	300	8.80667	9.66767	10.51467	
14	\overline{B}_1	8.74671	9.72356	10.66810	
15	∂_1	0.14895	0.12009	0.15871	

	Table V						
Calculatio	on of B ₂ for different activation	on energies and ∂_2	values at differen	nt temperature			
	for the complex [Mn(5-ATTZ)(CH ₃ COO) ₂]						
Serial no	Temperature(⁰ C)	18 kcal	20 kcal	22 kcal			
1	180	9.57467	10.62667	11.66967			
2	190	9.80361	10.83861	11.86061			
3	200	9.83282	10.84482	11.84982			
4	210	9.87138	10.86738	11.84938			
5	220	9.88807	10.86207	11.83207			
6	230	9.92300	10.87900	11.82700			
7	240	9.96595	10.90495	11.83495			
8	250	9.90732	10.82832	11.74632			
9	260	9.80950	10.71850	11.61750			
10	270	9.75006	10.64606	11.52806			
11	280	9.75774	10.63574	11.50474			
12	290	9.87827	10.74227	11.59427			
13	300	10.24806	10.09506	11.93906			
14	\overline{B}_2	9.86234	10.80688	11.74257			
15	∂_2	0.14666	0.12621	0.13719			

The table given below show the least value of $\partial \min 0.12009$ in b=1 suggestive of order of reaction=1 and activation energy=18Kcal/mol.

Table VI					
	b_0		b ₁		b ₂
E^{*}	∂_0	E^{*}	∂_1	E^*	∂_2
12	0.13539	16	0.14895	18	0.14666
14	0.13158	18	0.12009	20	0.12621
16	0.19029	20	0.15871	22	0.13719

Table VII					
Methods	Order of reaction	Activation energy			
	[n]	E*			
Freeman & Caroll	1.10	19.87397Kcal/mol			
J.Zsako	1.00	18.00000Kcal/mol			

The frequency factor Z was calculated using the equation

 $\log Z = B + \log Rq - \log E^*$

q =Heating rate 10° /minutes

E* = 18Kcal/mol

R = gas constant

Thus the frequency factor for the thermolysis step under consideration was found to be 9.79873×10^4 sec⁻¹

The apparent entropy of activation was calculated to be -154.31138 e.u after solving the equation $\Delta S^{\#} = R \ln Zh/KT$

Where T stands for the absolute temperature 543K at which the steps under consideration was half complete.

The values i.e. order of reaction and activation energy evaluated by two different methods is in good agreement within limit.

REFERENCES

[1]. M.F. Flezor, Thermal behavior of Teflon / phenolic liners in self lubricating bearing. *J. thermal.anal* 49,219 (**1997**).

[2]. S.Vyazovkin kinetic concept of thermally stimulated reaction in solid; a view from a historical perspective: *int. rev.phys. chem.*19, 45 (**2000**).

[3]. N.Hurdve Prayinaru; M.Creanga A; Alazaroies S, Hurdne N; The non isothermal kinetic study of the thermal degradation processes of some azopolymeric liquid crystals *Rev Mat Plast* 41,41 (**2004**).

[4]. R.K Agarwal, S.Prasad, N.Gahlot: Synthesis Spectral and thermal properties of some penta coordinated complex of oxovanadium of 4-amino-antipyrine: *Truck J. Chem* 28,691 (**2004**).

[5]. Chem.Luoy, P Zhao F.Q-Hu R.Z. Li s.w. goa.Y, kinetic and mechanism of the thermaldecomposition reaction 3,3-bis(azidomethyl) oxetane 1 tetrahydrofuran copolymer: *Chem.J. Chem* 22,1219 (**2004**)

[6]. A.B. Signeria Bannach G.Rodriguer E.C. Carvalho C.T. solid-state 2 –methoxy benzoates of light trivalent lanthanide synthesis, characterization and other mol. behavior: *J Thermal Anal. Cal.* 91,897 (**2008**).

[7]. Wang Z.H Go YZ, Zhang J.Mal, Song HB, Fan ZJ: synthesis and biological activity of organization 4-methyl 1,2,3 thiatriazole-7- Caroxylate: *J.Agro food Chem.* 58, 2715 (**2010**).

[8]. J.Franz. Z.Yang, Zharg H.M.N. Wong H, Cai F.Zuo X, Zheng Q, Zhijin HS: Synthesis, Crystal structure and biological activity of 4-metyl 1,2,3 thiatriazole containing 1,2,4 triazole (1,3,4) –b thadiazoles: *J.Agirc Food Chem* 58,2630 (**2010**).

[9]. S.D. "ulger, N.Saglam, A.O. Beld" uz, S.G. "uner and S.Karab" Ocek: *Biometals* 13,261 (2000).

[10]. S.G. "uner and S.Karab" Ocek, J.Biochem.Mol.Toxic, 12, 53 (1998).

[11]. A Maiti, A.K. Guha and S.Ghos: J. Inorg.Biochem. 33,57(1988).

- [12]. H.Singh, D.S. Yadav and S.B.S. Mishra: J. Inorg. Nucl. Chem. 43, 1701, 1704 (1981).
- [13]. S.G. "uner and S.Karab" Ocek and I Kaklikkaya: Bio oran Med. Chem. 7, 329 (1999)
- [14]. ES Freeman and Caroll, J.Phys.Chem: 62,394 (1958).
- [15]. C.D.Doyle, J.Appl.Polym. Sci, 5,285 (1961).

[16]. J.Zsako, J.Phys, Chem, 72, 2406 (1968).