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ABSTRACT

The influence of a homogeneous magnetic field on the electron states localized over the surface of
an dlipsoidal semiconductor (dielectric) nanoparticle by the electrostatic image forces is studied
theoretically. The effects of the resonant interaction of light with such local electron states in
presence and in absence of a homogeneous magnetic field are investigated.
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INTRODUCTION

Optical [1], electro-optical and magneto-optical [@operties of nanostructures consisting of
nanoparticles with sizea ~ 1-1¢ nm, synthesized in semiconductor, dielectric anetattic
matrices are currently under intensive investigatiStudies are caused by the fact that such
nanostructures are the new promising nanomatedatseate new elements of nanooptoelectronics
(in particular, as an active area of semicondustfaction nanolasers [3], as well as new, high
absorptive nanomaterials [4,5]).

In this paper one theoretically investigates thi#ue@mce of a homogeneous magnetic field on
electron states localized by electrostatic imagee® over the surface of ellipsoidal germanium
nanoparticle placed in vacuum. The effects of rasbmteraction of light with such local electron
states both in absence and in presence of the lemaogs magnetic field were investigated for the
first time. A new optical and a magneto-optical hogls of diagnostics of nanostructures, allowing
determination of dispersion degree of nanostrustuere proposed.
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MATERIALS AND METHODS

Local electron states over ellipsoidal interface adlielectric media

In works [6-13] a simple model of quasi-zero-dimenal nanosystem was used, in which the
conditions of localization of charge carriers ie guburbs of spherical dielectric (semiconductor or
metal) nanoparticle were analyzed. This model wasudral dielectric spherical nanoparticle wath
radius ande,; permittivity, surrounded by a medium with permittivity, and quasiparticle with
charge, moving either in the medium withpermittivity andm, effective mass near the interface or
with m, effective mass inside the spherical nanoparticléehe medium withe; permittivity. In
making so, in [6-13] an electrostatic task has bemwed in the final analytical form about a field
induced by the nanoparticle afradius, and analytical expressions have been féamgblarization
interaction energy (r, a) (wherer — the distance of the charge carrier from theareoit spherical
nanoparticle).

Polarization interactioiJ (r, a) of the charge carrier with a spherical interfgdnanoparticle -
medium) depended on the relative permittivity value ¢1/¢,). For the charge carriers moving near
the dielectric nanoparticle, there are two pogsigdl: 1) polarization interactiob (r, a) leads to
attraction of the charge carrier to the surfacéhefnanoparticle (fos < 1 - to the outer surface of
the nanoparticle, i > 1 - to the inner surface of the nanoparticlaj] eespectively to formation of
the outer surface states [6-9] and the inner serfdates [6, 7, 10]; 2) when< 1, polarization
interactionU (r, a) causes repulsion of the charge carrier from imnseface of the dielectric
nanoparticle and rise in its volume of the bulkalostates [6, 7, 11-13].

In [6-13], in particular, it was shown that withalease ira a dimensional quantum effect occurs,
which prevents localization of the charge carriertioe sufficiently small dielectric nanoparticles.
The least critical radiua, of the nanopatrticle to appear a local state

a, =b¥ =616 al”, (1)
was close td&' value - the average distance of the charge cadogatized over the flat interface in
the ground state [6-13] . In formula (1)
® _ &R
ﬂ- =

Toome @)

is the Bohr radius of the charge carrier in the iomadwith e, permittivity ( = 1, 2), and the
parameter

. (82 —21 )

F= (22 &y ) 3)

The ability to use the expression(r, a) describing the polarization interaction energyhef charge
carrier with the spherical interface (hanoparticteedium), obtained in [6-13] in the framework of
macroscopic electrostatics, can be justified ifldeal electron states emerging in the fieldr, a)
will have macroscopic character, for which

azb®sa,, 4)

(whereag distance being an order of interatomic size [7,8])
Consider a simple quasi-zero-dimensional nanosysténe neutral dielectric ellipsoidal
nanoparticle (withay < a, < ag semiaxes) withe, permittivity, surrounded by the medium with
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permittivity, and the electron (witicharge) moving in the medium with, with me effective mass,
near the interface (nanoparticle - medium) (Fig.Fbr simplicity one considers here, without loss
of generality, the case where permittivities ofaaént media are very different from each other (i.e
€1 << &2). As shown in [6-13], for free; < ¢, the functional form of the polarization interacti
energyU (r, @) providing attraction of the charge carrier to theter surface of the nanoparticle
depends weakly on the relative permittiwtythat affects onI;le} value (1).

One also assumes that the surface of the diele@noparticle has high potential barri&rs co,
preventing penetration of the charge carrier in thek of the nanoparticle. As shown by
calculations [14], the change in parameters of fi&cher in a wide range has little influence oe th
binding energy of the local state of the chargeiear

One is limited only the case when the electrorcalized by electrostatic image forces at small
distances from the interface (i.& = b;ﬂ — its average distanc® the interface, which is

significantly less than the characteristic rad®s of curvature of the nanoparticle surface)

{= [EflRu] «<1, Eﬁ’“£1["}]r R, [ngr ()

where R,(r.) - the principal radii of curvature ai surface point of the ellipsoidal nanoparticle.
When condition (5) is fulfilled, the polarizationteraction energy of the electron moving over the
outer ellipsoidal surface of the nanoparticle, e tasic approximation, takes the form [1-5]:

B e’ ©)
4z

Ug(z) = —

Formula (6) describes the potential energy of ebstatic image forces of the electron localized
over the flat interface between two dielectric naedi  [15].

Since Uy(z) (5) does not depend on the positionrpfpoint on the surface of nanoparticle, the
nanopatrticle surface curvature correction (up~p terms) toU,(z) (6) was obtained in [16]:

U,(z,1.) = (Bey)e*H(r)In|z H( ;)| )

In (7), t he value

H(r) = (1/2)[R{* () + Ry (1) ®)

is the mean surface curvature of the nanoparticie;h point. U, (z, r,) correction (7) is the main
part determining the electron motion along the panticle surface.

One writes the Schrodinger equation describing dleetron motion over the outer ellipsoidal
surface of the n§1noparticle in such form

— A¥(r) + [Ug(2) + Uy ()] 9(r) = E¥ (r)
Zm, 9)

When condition (4) of the Schrédinger equationigJulfilled, the electron motion can be divided
onto the motion perpendicular to the nanoparticigase and the motion along the surface of the
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nanoparticle. Then the wave function of the elec#(r) and its energy spectrufone writes in
the following form:

W (r) = 1o (2)¥(r,) (10)

E=E,+E, 1(1)
As the wave functiony,(z) describing the electron motion perpendicular te tlanoparticle
surface, one takes the wave function of Coulomie s8], that characterizes the ground state of
the electron localized over the flat interface bedw two dielectric media. At the same time the
energy spectrum of the ground state of the electsodescribed by Coulomb spectrum [6-8]:

Ey = —Ry, /16 ; Ry, = (18h? /m_(b{")?. (12)

One assumes the curvature of the nanoparticlecaustaooth enough so that
(1)

b,” << Ry~ (ay,a,,a;) (13)
Averaging the Schrodinger equation (9) Hyand taking into account the explicit form of the
function x,(z), in the basic approximation [16] one obtains:

-
=

ﬁzif-‘(rsj + U(ij(rsj = Esw
m, 41

U(r) = (EE) o2 H(r) Inlz H( 7)),

where A, (r.) - two-dimensional Laplace operator on the surfage,- the energy of the electron
moving along the surface of the nanoparticle.

The Schrodinger equation (14) describes the maifoquasi-two-dimensional electron in the field
of electrostatic image forces over the owlipsoidal surface of the nanoparticle. Its salntis the
electron energy spectrum that is described by thergy spectrum of the anisotropic two-
dimensional oscillator:

0 = s +2) R (2, a9

where the principal quantum numbers = 0, 1, 2 ... andn, = 0, 1, 2 ... In formula (15) the
frequencieso; andw; are determined by the following expressions:

DDl
sis? 52 =2 2 \s: =2 h
sr(a-F) (oD G o ()

B

(16)
) (17)

where s, = (a,/b{"), 5, = (a2/b{"), 55 = (as/b"). (wy/w;) ratio characterizes the field

anisotropy degree of electrostatic image forces.
It should be noted that the electron is localizedrra pole of the largest curvature of the elligabi
nanoparticle (i.e., near 3 axis) (Fig. 1) .
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Local electron states in magnetic field
One directs the homogeneous magnetic fieldHdintensity along the normal to the ellipsoidal
surface of the nanoparticle af point. Rotate the local coordinate system #t point so that a
vector potential chosen in usual forH[— Hy,ﬂ,ﬂ)in the area of electron localization should
satisfy the gauge conditicin = 0 (wheren(r,) — the normal to the surface of the nanoparticle at
r . point) with precision up to the terms

(I/Ry) <1 (18)

In inequality (18); (i = 1, 2) are defined by expressions:
l,= (R fmsg:')lﬁ}! g = mawiz of1

In [16], with precision up to the terms of (18) erdfor the wave functio# () of the electron the
equation

e a yy @ 1 )
| —— ¥+ o (gx” + gy )W = E¥

2m, Yox L  9y?

(20)

was obtained describing the anisotropic two-dimamai oscillator in the homogeneous magnetic
field of H intensity. In (20) the value

Lz = (chfeF)*?, (21)

is the characteristic size of electron localizatemea (in the ground state) in the homogeneous
magnetic field ofi intensity (where- — the speed of light in vacuum). Equation (20) s@ased in

[16] by moving to the Fourier representation Ayyfollowed by diagonalization of the dynamical
matrix. The frequencies

0y, = [1,-"2][[0::1 + m:jz + 03@]”2 + [("—'3'1_ m:jz + mg]lﬂ (22)
obtained in [16] determine the electron energy spet

1 1
E = A0 ( +—)+hnﬂ[ ﬂ+—),
m;_,ml 1 ml 2 & m.r. 2 (23)

(wheremy =0, 1,2 ... andmp, =0, 1, 2 ... - the magnetic quantum numbers), aedci/clotron
frequencyw, is determined by an expression
w, = (el /m,c). (24)

Thus, the energy spectrum of transverse motiomefelectron (in the plane perpendicular to the
magnetic field direction®), is described by the energy spectrum of the #&mwpm two-
dimensional oscillator (22), (23), moreover thegfrency ratia(£2,./0,) characterizes the oscillator
anisotropy degree. Anharmonic parts discarded rival®on of equation (20) give nonequidistant

corrections to the energy levels (Z&[hﬂ[ifﬁﬂj)zmz [16].

Comparison of theory with experiment

The behavior of nanosystem was studied experinlgnia¥], representing an ellipsoidal CdS

nanoparticle (with semi-axes; = 1.2 nm; a, = 1.6 nm; a; = 2 nm), placed in vacuum, in the

homogeneous magnetic field d intensity. For such nanosystem, the ground sta¢egy £, of

transverse motion of the electron, according tonfda (12), takes the valllg,| =~ 0.85 eV, and
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the valuez b:l} ~ 0.32 nm. The fulfilment of conditions (4) and (13) allowthe energy
spectrum of the electron localized by the elecatostimage forces over the outer surface of the
ellipsoidal nanoparticle to be described by thesaimopic two-dimensional oscillator spectrum (15)
with Aw; = 19.7 meV (¥ 220 K) and hw, = 12.67 meV (¥ 141 K) frequencies respectively
equal tohw, = 19.7 meV (& 220 K) andhw, = 12.67 meV (¥ 141 K) .

The simplest methods of detection and investigatibtine local electron states considered here in
nanosystems may be studying the effects of resantaraction of light with such electron states.

Local levels of the e|eCtl’OfE£”'-’”"}[al,mg,aaj (15) in the nanosystems to be studied will be
slightly broadened at temperatufés 141 K if the distance between them
(ni__,n:._:l _ r?‘!i_.?‘!'.l.

AE =E_ " " (aya,,a,)— Ej”‘-’”"}(al,az,aaj « kT

(myme)

(25)
(wherek — the Boltzmann constant) [9]. For those nanosyst& which the binding energy of the

local electron stateg ™"’ (a,,a,,a,) (15) satisfies the condition (24), their investigas are
possible in the processes of absorption (and eom)ksin transitions with frequencies

(ni.mg (14,029
I:ni_,:l‘!:._jl _ E_q-n_ =) r:ﬂ'lr ) a’!ij B Es:n_m }(ﬂ'lr ) a*!ij

(mymg

arranged in the infrared spectrum af&a(e,, ;) # 20 meV (220 K)).

It should be noted that the dependence of specgliifi™*’ (a,.a,, a;) (15) on the nanoparticle
sizes(a,, a,,a;) enables to select nanoinhomogeneities in the pateas to be studied by laser
spectroscopy methods.

When ?

l:,{ = b:l} (27)
the magnetic field o' intensity deforms the electron states localizeer dlie outer surface of the
ellipsoidal nanoparticle (near 3 axis, Fig. 1) bg electrostatic image forces. In [8] it was shown
that the local states of the electron in polar@afield I, (z) (5) occurred, in the ground state, with
a mean radius

(11

7=(a;+5,8b") 28)

To estimate the intensityi, of the strong magnetic field, in condition (27f)eoreplacesl:«£1]I by
the valuer (28). As a result, one obtains the value of intgred the strong magnetic field
ke

e =2 (29)

starting from that, when# = H_ , the local electron states to be studied defbmthe plane
perpendicular to the magnetic field directich). In making so, the local electron states acqaire
kind of "needle" form. In the nanosystem to be &ddy us, the valugf, ~ 1.06 - 10° Gs, and the
corresponding value of cyclotron frequency, acamydito formula (24), is equal to
w? ~ 513 meV (57 K).

Let us investigate the peculiarities of resonateraction of light with the local electron states i
the magnetic field. For this one writes the expoess taking into account formulas (22), (23), that
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describe the transition frequencies of local etetstatesi(l, andifl, in the magnetic field ofH
intensity:

-
=

RO, (3) = %H(hml + heo)? + (T:,hc) Hzlm N l(hml TheadTt (:ah )zﬂzlml (30)

E‘h 2 1/2
- l(hml— fe,)? +( ) :HT:] 1
m_C

1/2

1 . RAE
ha, (70 =5H[hm1 + hoy)? 4+ (TZ E) .'H“l

(31)
One studies the behavior of local electron statdhe magnetic field with its intensit§f being in
the range

5:107%H, < H < 10H, . (32)

For the magnetic fields with intensities
5-107°H, = H = H, (33)

to fulfil the conditions

[ ha, T B { (e/mc)H z w1

(hoy + he,) a (A, + how,) (34)
haw, ? | (e/mc)H :

[[hml — hmgj] B [[hml — hw,) «d

the transition frequencie&(l; and hfl, (as follows from decomposition of (30) and (31) the
smallness parameters (33), with precision up tes&o®nd order parts) are weakly dependent on the
magnetic field intensity (Fig. 2):

Ay ¥ [1+ (e/m c)H /] hay, (35)
A, ¥ ha, (36)

For the strong magnetic fields with intensities

H,.=H < 10H, (37)

the transition frequenciefl, (}) and k0, ('), according to formulas (30) and (30), depend on
H in essentially nonlinear manner (Fig. 2).

In changing the magnetic field intensity/ in the interval (32), the transition frequencies
A0, (H)(30) and RO, (H) (31) vary smoothly, respectively, in the intervalfig. 2):

(19.7 meV< hf); <53.7 meV); (4.65 me¥ ki, <12.7 meV), (38)

arranged in the infrared spectrum area. The accolininharmonicity leads to split of the two
resonance lines(k0, (#) and AQ, (#))onto N~[1 + (kT/h0, (7))] peaks equidistant by
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hQ, (H) and hQ, () respectively (where i

1, 2)  [16].

CONCLUSION

Thus, the dependencies of the transition frequeridiy (#) (30) andhafl, (H) (31) between the
levels (23) of the local electron states on the meéig field intensityH in resonant absorption (and
emission) of light by the nanosystem to be studiddw purposefully vary the frequencies of
transitions (30) and (31) over a wide range (3&hainfrared spectrum area by changi®value

in the interval (32).

The observed features of local electron stateycaded with the dependence of their binding
energies (15) and (23) on the sifes, a,,a;) of the nanoparticles, as well as on the magntid f
intensity, may be interesting for developing new methodspiical and magneto-optical control
of the dispersion degree of nanostructures. Thesldpmnent of such new methods may be of
particular interest to control the nucleation afew phase in electromagnetic, radiation or thermal
effects on multicomponent materials containing ipemiconductor and insulator [1-5].

Akas

€2

o

Fig. 1. Schematic representation of the ellipsoidalanoparticle (with semi-axes(a,,a,,a;))
with &, permittivity placed in the medium with =; permittivity.

50

(meV) —

O, RO,
e

_ 2

; — : T . . . . —
H (10° Gs)

Fig. 2. Transition frequenciesh), (#') (30) and k1, (}) (31) as a function of magnetic field
intensity H'. Curves 1 and 2 correspond to the frequencies dfi¢ transitions {1, (30) and

k0, (31) respectively. Magnetic field intensityH is measured in gauss (Gs), and the transition
frequencies — in meV.
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