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ABSTRACT

Concrete has a versatile use in the construction practice for its availability, cheap rate, and
flexibility of handling. As a result, in the construction process it is always important to measure the
concrete compressive strength as strength properties of cement paste mixture. A smart modeling
approach Artificial Neural Networks(ANNSs) have recently been introduced as an efficient and
powerful modeling technique for applications involving a large number of variables, especially with
highly non-linear and complex interactions among input/output variables. In this paper, an
artificial neural network of the feed-forward back-propagation type has been applied as a data
treatment technique. The 28-day compressive strength values are considered as the aim of the
prediction. A total of 269 specimens are selected. The system is trained and validated using
188(70%) pairs chosen randomly from the data set and tested using the remaining 81(30%) pairs.
Results indicate that models performed quite well in predicting the compressive strength in case of
training dataset and also for independent data set.

Keywords : Concrete compressive strength, Artificial Neuratwak (ANN), feed-forward back
propagation, skewed distribution.

INTRODUCTION

Concrete has been used as a construction materiahdre than a century. Concrete is the only
major building material that can be delivered te jbb site in a plastic state. This unique quality
makes concrete desirable as a building materiausecit can be modeled to virtually any form or
shape. Concrete provides a wide latitude in surfeaxtires and colors and can be used to construct
a wide variety of structures, such as highwayssirekts, bridges, dams, large buildings, airport ru
ways, irrigation structures, breakwaters, and dosies and farm building, houses, and even
barges and ships (Vahid and Mohammad, 2010). Ctngseinert mass which grows from a
cementing medium. Concrete is a product of two me@gmponent one is the cement paste and
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another is the inert mass. In order to form theax@ing medium, cement would mix water. Coarse
aggregates and fine aggregates are the part of mass. In properly mixed concrete, these
materials are completely surrounded and coatecelneat paste filling all the void space between
the particles (Raju, 1979). Strength is the degigyperty by the concrete. An overall picture of
concrete quality is being reflected by the concsttength. There are many factors which control
concrete compressive strength. Concrete mix prapong, aggregate quality, type of cement, and
the most important one is the water cement ratiatecement ratio has a critical input on concrete
strength characteristic (Hasan, 2009).
Thus the main criterion for evaluating the compirasstrength of concrete suggested is the strength
of concrete on 28day. Therefore one should wait 28 days to achB8#l@ strength of each layer
of concrete (Vahidet. al., 2010). Concrete mix design is a process done bggusode
recommendation and sometimes by experience. It@geme experimental error in mix design the
test result fail to achieve the designed strengibn repetition of the entire process becomes
mandatory, which can be costly and time consunmbiwy. every failure it is necessary to wait at
least 28 days, thus the need for an easy and kuitadthod for estimating strength is being felt all
the time. Hence a rapid and reliable concrete gthreprediction would be of great significance
(Khederet. al, 2003).
Over the last few decades, a considerable volumesefarch has been directed toward gathering the
strength relations for concrete in compression. WMstudies are being carried out to explore the
concrete behavior and its prediction. Different rapghes using regression functions have been
proposed for predicting the concrete strength (Seiehl., 1989). Traditional approaches such as
design of experiments are established based orrieaipelationship and experimental data which
are improving day by day (I-chang Yeh, 2006). Atierhas been developed by M. M. Hasan and
A. Kabir (2011) for a relationship between concraiength and its age and finally expresses this
relationship with a simple mathematical equatioom8 smart data driven self adaptive methods
such as Artificial Neural Network (ANN), in thatdre are few a priori assumptions about the
models for problem under study have been introdBedperkiewiczet. al., 1995; Vahidet. al.,
2010; E. Rasat. al., 2009; I-cheng Yeh, 2006, Guogiang Zhadag,al., 1997; Vanluachene and
Sun 1990). However, Hajela and Berke (1991) dematesthat neural networks can be used for
rapid analysis for structural optimization. Neuredtwork also applied by Szewczyk and Noor
(1996, 1997) for sensitivity and non-linear struatwanalysis; by Kushidet. al., (1997) to develop
a concrete bridge rating system; by Hegetzwl., (1998) to develop a model for the load defective
behavior of concrete strain distribution at failureinforcing steel strain distribution at failuzed
crack-pattern formation of concrete slabs.
In recent years, Artificial Neural Network (ANN) ishown exceptional performance as regression
tools, especially when used for pattern recogniteord function estimation. They learn from
examples and capture subtle functional relatiorsslamong the data even if the underlying
relationships are unknown or hard to describe (@umpZhanget. al., 1997). Unlike traditional
parametric models, these models are able to casiraupposedly complete relationship between
input and output variable with an excellent levelaocuracy compared with that of conventional
methods (Andersongt. al., 1992). In comparison to parametric methods, ANMEB deal with
relatively imprecise or incomplete data and appr@ate results, and are robust. They are highly
parallel that is, their numerous independent opmratan be executed simultaneously (Haykin,
1994). Objective of all studies in relation with ANthat have been carried out was to make
concrete strength predictable and efficient preaiicfor a given level of concrete components
structure.
In most application where neural networks are etqukto model highly non-linear and skewed, it
shows a non-uniform distribution. A recent study Kymar (2005) which compares ANN and
classical regression methods shows that skewnestatm set should be reduced using some
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transformation like power transformation beforergizng out ANN analysis. Alturet. al., (2003)
demonstrated that highly skewed data distributietedorates the performance of the multilayer
perceptrons (MLP) type neural network.

The objective of this study is to make an attengptgather predictable concrete compressive
strength using Artificial Neural Network (ANN) cadsring different transformation technique
where its component arise with continuous featuite-a/problem of skewed distributional feature.

MATERIALS AND METHODS

Artificial Neural Network (ANN)

Artificial Neural Network (ANN) modeling, a paradig for computation and knowledge
representation, is originally inspired by the aspefcthe information processing and physical
structure of the brain with a web of neural conivect(see figure 1). Therefore some writers
classified it as a “microscopic”, “whole box” systeand an expert system as a “microscopic”,
“black-box” system (Eldon Y. Li, 1994). Artificiateural network are used in three main ways: (i)
as models of biological nervous system and inetiag, (ii) as real-time adaptive signal processors
controllers implemented in hardware for applicasi@uch as robots, (iii) as data analytic methods
(Warren, 1994).
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Figure 1. The Neural connection in animals’ biologtal neuron (in top) and the
counterpart Artificial Neural network structure (in  bottom)

An artificial neural network is a network of maniynple processors that are called nodes. A multilaye
perceptron may be thought of as consisting of Epémparallel data processing cells (E. Retsal., 2009).
Each node (neuron) has a small amount of local mgniNodes in the input layer only act as buffers fo
distributing the input signals to nodes in the kiddayer. The nodes are connected by connectiaoh, e
usually carrying numeric data called weights endolg any of the existing methods. Each input sgnal
after weighting them with the strength of respextoonnections from the input layers and computes it
output as a function of the sum. The nodes openatide local data and on the inputs they receiaethe
connections. The difference between the computéguband the target are combined together by ar err
function to give the network verification set anskd to keep an independent check of the progrettgeof
algorithm. Training of the neural network is stogpehen the error for the verification set begingtrease
(Andersongt. al., 1992; Haykin, S., 1994; Ju-Wean al., 1999).

The main principle of neural network computinghse tlecomposition of the input-output relationsimip ia
series of linearly separable steps using hiddearsagHaykin, S., 1994). There are three distinepstin
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developing an ANN based solution: i) data transfdiom or scaling, ii) network architecture defiaiti
when the number of hidden layers, the number oésaa each layer and the connectivity between thies
and set, iii) construction of learning algorithmarder to train the network (Andersa, al., 1992; Nehdi,
M., et. al., 2001). Figure 2 shows the simple architecture typ#al network that consists of an input layer,
series of hidden layers, an output layer and cdiorebetween them. Nodes in the input layer represe
possible influential factors that affect the nethvautputs and have no computation activities, wktie
output layer contains one or more nodes that pmthe network output. Hidden layers may contaiargd
number of hidden processing nodes. A feedforwakipaopagation network propagates the information
through connection weights from the input layertlie output layers via the hidden layer and compares
network outputs with known targets and propagdtesetror term from the output layer back to theutnp
layer, using a learning mechanism to adjust theymteiand biases (Andersaa, al., 1992; Ju-Wonet. al.,
1999).

hidden layerl

Imput laver hidden layer2

Targets 1

Impact Factors

Figure 2: Simple feed-forward back-propagation netwrk Architecture.

A functional link network introduces a hidden layémeurons. If model includes estimated weights
between the inputs and the hidden layers, and ittdeh layers use nonlinear activation function
such as the logistic function, the model becomesligely nonlinear. The resulting model is called
a multilayer perceptron (MLP). In general, with thee of the mathematical notations, multilayer
perceptron (MLP) works by the following formula

n, = number of input nodes in input layer (first layer)

n, = number of hidden neurons in hidden layer (middle layer)

x; = ith input (independent variable) for input layer

a; = bias for hidden layer

J
b;; = weight from ith input nodes to jth hidden layer
g; = net input to jth hidden layer = a; + Z b;;x;
i=1
h; = hidden layer value for jth node = act,(g;)
¢, = bias for output or intercept
d}-k = weight from jth hidden node to kth output node
np
q, = kth net input to output layer = ¢, + Z dy hy
j=1
v, = kth predicted value(output value) = act,(q,)
v, = dependent variable(training value) and r, = residual = y, —p,
Where, act(h) and act(o) are the activation fumstidor hidden and output layers respectively
(Warren, 1994). MLPs are universal approximatorifé/1992). MLPs can be used with little
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knowledge about the form of the relationship betwé#ee independent and dependent variable.
They are in general purpose, flexible, non-lineadsis that, given enough hidden neurons and
enough data, can approximate virtually any functiorany desired degree of accuracy (Warren,
1994). The accuracy is based on minimizing totedrebetween calculated and desired values at
output layer during modification of connection wetigg One should find the optimal network by
trial and error. The most interesting property ofedwork is its ability to generalize new cases. Fo
this purpose, independent data set is used tothesheural network and check its performance
(Andersongt. al., 1992; Ju-Wonet. al., 1999). Upon successful completion of the trairpngcess,

a well-trained neural network is not only capaldle@mputing the expected outputs of any input set
of the data used in the training stage, but shaldd be able to predict, with an acceptable degiree
accuracy, the outcome of any unfamiliar set of tnpaated within the range of the training data
(Anderson,et. al., 1992; Nehdigt. al., 2001). However, inspection of inputs and target daets
should be necessary in case of skewed patternrebetorying out neural network. It has been
shown (by Altunet. al., 2003) that high-dimensional data deterioratesptréormance of the MLP
type neural network. This inspection could be basethe modern transformation techniques

Transformation Techniques

In most application where neural networks are etquk¢o model highly non-linear and multi-
dimensional functions, experimental data showsrauroform distribution. This fact is in line with
the central limit theorem which states that datemfran experiment approaches to normal
distribution as the number of sample taken appresatifinity. However, in real life problems with
this assumption is not always realistic as datansight show non-normal and highly skewed
distribution. The phenomenon is also mostly truedogineering problem. The common practice
adopted by NN practitioners is to scale the datalisearly into a small range before training
process. As a result of this treatment, the datcaded into predefined range but the distribution
characteristic of the data is preserved. If it gnpissible to transform one set of measures into
another, then many possibilities become availabteniodifying the data to fit more closely the
underlying assumptions of statistical tests. Aneatdenefit about most of the transformation is that
when we transform the data to meet one assumpitvenpffers come closer to meeting other
assumption as well. As it is well known that megssg data into O to 1 provides the best result of
artificial neural network, it is required to scainhe input data and find whether the series is
skewed. As a rule of thumb, if data are reasonaldyributed and if variances are reasonably
homogeneous, there is probably nothing to be gaiespplying a transformation. As suggested by
Tabachinick and Fidelt (2007) and Howell (2007} tbllowing guidelines should be used when
transforming data. If data distribution is i) moakely positive skewed use square root
transformation, ii) substantially positive skewadtf zero values) use logarithmic transformation,
iii) one possible transformation for the valuess limetween O to 1 is P?— (1 —. , if the series
shows skewedness.

Selection of Database
As concrete compressive strength is of great inapad the selection of the database chosen to train
a neural network is such that it will be capablecapturing the relationship between the input
parameters of cement paste mixtures and its mexddgmrioperties. It must be trained on large and
comprehensive sets of reliable experimental datadbntain influential factors regarding concrete
compressive strength. At a preliminary stage, th¢a dset collected includes the eight input
parameters, Cement (component 1), Blast Furnaag @amponent 2), Fly Ash (component 3),
Water (component 4), Water-cement ratio (compoBgnSuperplasticizer (component 6), Coarsh
Aggregate (component 7) and finally Fine Aggregdiesmponent 8). The output parameter
includes the concrete compressive strength. Alinpats measured as (Kgina  mixtures). Since
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the designing a strength of concrete normally respits 28" day strength (Hamiet. al 2006), so
we have collect data based on th& Bays from the construction work. A total of 26%ebvations
of input and output parameters are collected.

Artificial Neural Network Architecture

There is no effective procedure for indentifyinge tbptimal architecture of a network before
training. However, it is important for the hiddeayérs to have small number of nodes. An
excessive number of hidden nodes may cause theorketey memorize the training data. In such
case, the ANN would not be able to interpolate atifely between adjacent training data points
(Rasa, 2009). Moreover, for highly skewed inputd targets data, it deteriorates the performance
of MLP type neural network (Altunet. al., 2003). Also too few hidden nodes, on the othedhan
will limit the networks ability to construct an agleate relationship between input and target
variable (Andersorgt. al., 1992).

Neural network works best when all the input antpotivalues are between 0 and 1. This requires
scaling input data set and output data set into Q.tlnspection of input and target data sets as
mentioned in database selection section revealghba distributions are a substantially positjvel
skewed with zero value. Then according to Taba¢hmicd Fidell (2007) suggestion, we use
appropriate transformation of input data sets. mmmber of hidden nodes and layers are usually
determined via a trial and error procedure. Acaugdio the method suggested by Dave Anderson
and George McNeill (1992) an upper bound for theabber of processing nodes in the hidden layers
can be calculated by dividing the number of inputipat pair in the training set by the total number
of input and output nodes in the network, multipley scaling factor between five and ten.

Water cement materials ratio (W/cm), the unit cotdef cement, the blast furnace slag, water and
fly ash are represented by input nodes, while thtpwd layer contains one node with compressive
strength of concrete. The neural network feedfodwaback-propagation type is used by the
“neuralnet” package in R i386 2.15.1. Table 2 shtvesneural network parameters used in training
in “neuralnet” package. Biases and weights betwemtes are modified on a function of input and
target data distribution (Altuet. al., 2007). The error between the predicted error angket value

is then calculated and stored. The network is ptesewith the testing data set. The root-mean-
square (RMS) of the error is then calculated aruk Ipropagated to the network. To avoid the over
fitting of the neural network model to the dataidgriterative, training, a separate set of data tvas
validate the model at some intervals during tragnimraining is stopped when the error for the
validation set begins to increase.

Tablel: Neural network parameters used in training inéhalnet” package

Parameter Value Description
Hidden 5,3 No. of hidden nodes in each layer
Threshold 0.005 Threshold for error function for stopping
criteria
Learning rate 0.10 Learning rate
Algorithm “bp” Type of algorithm used
Act.fct “tanh” Type of activation function use
Likelihood “True Provides AIC, BIC value

In this study the network was trained and validateatsed on 188(70%) training patterns chosen
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randomly from 269 available data. The remaining38%) pairs of the independent data were used
to test the network after completion of traininglaralidation in order to assess its performance on
the data to which it has never before been expoBeein we can use the network to predict the
compressive strength of concrete with the differaalties of inputs. Here, it uses the learning rate
.10 and number of iteration 10000 with an error @o@05.

RESULT AND DISCUSSION

The network was trained to predict cement pastggities such as compressive strength of
concrete using a total of 188 training and valmgtdata sets and 81 testing data sets. To test
accuracy of the ANN model, the final trained models called upon to recall the data not used in
the training process

The final information about the training processvided by the “neuralnet” package with
chosen network parameter is given below:

error 0.557420980652
reached.threshold 0.004737527497
steps 6295
Intercept.to.1layhid1 -3.641857614278

Here, the training process needed 6295 steps alhtibsolute partial derivatives of the error

function were smaller than 0.005 the required thoks The estimated weights are range from -

37.92 to 11.46. For instance, the bias of the firdten layer is -3.6418. The estimated weights of
the respective input parameters are visualizegyuré 4 with trained data set.
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Figure 3: Plot of a trained neural network including trained synaptic weights and basic
information about the training process

Among all the input parameters, we have select digmificant input parameters for output
parameter through variable selection procedure aéso based on the correlation structure. The
variable selection procedure and correlation stinectonducted by SPSS 13.0, shows that cement,

blast furnace slag, water, water-cement ratio,affp are significant components for measuring
compressive strength of concrete.

Table 2 shows the related information, the numbedata, range, average values and standard
deviation of significant input and output variabbesed on 28day outcome.
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Table 2: Summery statistics regarding measured vaables

Variables Num Ran Aver Standar
ber of ge age d deviation
data
Cement (kg/+ 269 438 294 .4 107.800
78 7
Blast Furnace 359. 73.80
(kg/2 269 4 94 89.2571
Fly Ash (kg/2 269 200 gg'“ 61.5793
Water 125. 180.5
269 o5 58 20.1797
Water Cement 269 1.61 0.711 0.30624
(W/cm) 54 77 4
Concrete Compressiv 269 69.5 39.74 15.3156
Strength(MB) 060 25 7

Moreover the following figuresi(a) to 4(e) of partial regression plot depicts the indiabu
significant effect of cement, blast furnace slagtew, fly ash and water cement ratio on
compressive strength. Here, cement, blast furnage fby ash and W/cm has positive effect.
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WaterCement Ratio
(e)

Figure 4: Partial regression plot of compressive stngth (output) and each input variables
shown in 4(a) to 4(e).
A total of 10 cement paste mixtures, unfamiliathie network in the range of training data sets,
were presented to the ANN model and the networkregsired to predict the compressive strength
associated with each significant mixture. The nmtproportion and the measured and predicted
values are listed in Table 3.
Table 3: Measured and predicted values of outputsariable used in testing of ANN model.

Ser Testing Data Sets Compressive
ial No. Srength
Ceme Blast Fly Water Wi/ Meas Predict
nt Furnished Ash (W) Cm ured ed
(Cm) Stag
1 236 157 0 192 0.4 32.88 32.503
1 45 5
2 203 173 0 192 0.4 22.34 21.954
4 79 6
3 203.5 305.3 0 203.% 1. 41.68 42.003
0 43 4
4 200 133 0 192 0.4 30.43 30.413
6 68 4
5 250.2 166.8 0 203.% 0. 36.96 35.789
1 41 5
6 310 0 0 192 0.6 27.82 27.804
2 72 5
7 273 103 82 210 0.7 33.75 33.245
7 67 7
8 192 190 148 179 0. 37.16 36.945
3 96 6
9 250 144 112 220 0. 16.49 16.507
8 91 6
10 234 115 89 202 0. 19.98 19.519
6 79 8
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As mentioned earlier, a set of experimental daieuding 269 pairs of data, was used in this study,
from which 188 training and validating patterns &ehosen randomly and remaining 81 pairs were
used as measured data, to test and to verify flogeety and validity of the predicted values by th
network. A good agreement between the measuregraaicted values of the compressive strength
is observed as shown in figure 5. It can therefweeconcluded that the proposed ANN model is
adequately able to predict the compressive strevigtbment paste.

Performance Chart

45
40
35
30
25
20
15
10

Compressive Strenght

Recall test data set

Figure 5: Performance of ANN model predictions forconcrete compressive strength
for test data sets (blue color bar represents meased and red color bar represents
predicted value).

CONCLUSION

This study presents a smart statistical data-mir@pgroach for prediction of the compressive
strength of a concrete, based on Atrtificial Neuxatwork (ANN) approach. Here, it may be

concluding that the proposed model demonstrateslbiigy of a feed-forward back-propagation

neural network to predict the properties of cenpaste portion of concrete efficiently. Moreover,

the model performed quite well in predicting congsigee strength of concrete used in the training
process as well as in case of testing data sdtsvdra unfamiliar to the neural network.
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