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ABSTRACT

The contraction mapping of Linear and Quadratic backward SOR methods for Newton operator in
the nonlinear system of equation in real floating point arithmetic is presented. It is showed that if
the computable reachable set of linear backward SOR method is lower chain-reachable to the outer
computable chain-reachable Quadratic SOR method, the quadratic backward SOR method is not
only finer in topology but also faster than backward linear SOR method if the arithmetic
computational complexity involved in the execution of backward quadratic SOR is overlooked. This
was demonstrated by a numerical example with the two methods where quadratic backward SOR
method with Newton operator is showed to have superiority over the linear backward SOR with
Newton operator. The computed results for the two methods were compared with results earlier
obtained from Uwamusi where interval Gauss-Sedel method was used.
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INTRODUCTION

The paper describes convergence speed betweemélae &nd quadratic backward SOR iteration
methods driven by Newton method in real floatingnparithmetic for approximating solution to
nonlinear system of equation [1] and [2] providee &nalytic derivative of the function

F(x) =0, (1.1)
is easily available.

This means that there exiftisD O R" - R" andxOD, for which the Frechet derivative in an
open ballS= S(x*,r)D D remains valid. Newton method is attractive for sedution of nonlinear

system (1.1) because of its global convergenceafor choice ok OD. Abstractly, Newton
method is given by the equation

. £ (x®)
x**D) = (k) —%, (k=041...) 1.2)
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whose sequence of iterates, converges to theedesiiutiorx .

Fundamentally, method (1.1) is hardly solved ia fibrm it is presented rather, we often transform
to an equivalent linear system

As=-b | (1.3)

where the matriXAis assumed to be a non singular Jacobian matrig. sStution in general for
system 1.1 is given by

xk) =) + M (k=0,1,....m=0,1,..., i=1,2,....n) (1.4)

where s(”‘) is in form 1.3.This means, there is a closed lw@drabsorbent subs8&tCl D of a linear

00

topological space that is ultra-barrelled for whitie sequence[s(m)}mzl, a closed balanced
absorbent subsets of E for the graph of F thaewessarily closed in the product topology. The
sequence{s"‘”)}:zl is a defining sequence for S wherefrom, any ingladimit of countable globally
convex ultra-barrel space generated by Newton ndathoonvex, [3].

By further adoption of Miranda’s theorem on theduon F would yield thatx+s is a base of
neighbourhoods ofx, in (E,D) for which a fixed point theory for conttéon mapping

f (X) = xholds. The proof of this is well known in many taéure Texts, as result we omit.

The quadratic convergence of Newton method isfiradny 0 < a” <1 there holds the estimate

k+1)

“x* —x Zsa* Hx —x(")Hi, (k=01..., (1.5)

A philosophical consideration will be " if Newtowperator of equation 1.4 is quadratically
convergent, what is the nature of shrinkable nesghivoods in Hausdorff space?” It is known that
Newton operator is monotone and has a shrinkalde b&balanced neighbourhoods in (E,D) for

which a,s™ 0OD,, where0< a; <1. As the base is shrinking, it forces the seque[m;q‘m)}w to

m=1
converge to zero vector, as k approaches infiaitgpnsequence of Banach contraction mapping of
a fixed point.

In [4], it was showed that Hansen-Sengupta methoerges if there were multiple paths
simultaneously crossing a single point. This wasalestrated on a Trapezoidal Newton method. In
other word, the shrinkable base neighbourhooddaitehold thereof , an indication of not only

leading to stagnation point other than the solutiorbeing sought but divergence to infinity. It was
a motivation of the above preambles that adoptidhefollowing theorems will be found useful as
a tool in our work.

Theorem 1.1, (Brouwer, [5] ). LéD be a convex and compact subsefRSfand, int(D)# 0.Then

every continuous mappingG:D - D has at least one fixed point 0D, i.e., a point with
X =G(x).

A slight generalization of the theorem 1.1 candaenfl in Neumaier [5].

Theorem 1.2 , [ 5 ]. LeD be a convex and compact subsetRfwith int (D)¢O and let
G:D#0 and suppose th&:D - P(D) be c- continuous. Then there is some poinfl D with
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X OG(X).

W e noted that whem is a Lipschitz set foF on ,D thenF is Lipschitz continuous o with
Lipschitz constantr = sudﬂﬁﬂz} as earlier stated in equation 1.5.

The remaining section in the paper is arrangedBews. In section 2, a class of SOR iteration
method feasible in Newton operator is discussede a@forementioned linear and quadratic
backward SOR methods make use of relaxation paearretheir calculations, a brief review for
the construction of over relaxation parameter in the intervall,2] was again visited in section

3.Section 4 gives numerical illustration of the geeted methods and then conclusion is drawn at
end of the paper based on our findings.

MATERIALSAND METHODS

As stated earlier in the beginning of this papeswtdn method for nonlinear system consists of
successive linearization given in equation 1.3 wiaéi L(R"),bOR", andsOR" is to be found. In

a well organized sense, the generalized classatbsary linear iterative solver to which equation
1.3 conforms is in the form:

s™) =Gs™ +¢, (M= 04,....i =12,...,.) &

where s is arbitrary, and for some non singular matrix tHere exists a splitting matrix
A=H -(H -A) such that:

G=1-H'A c=H (2.2)

The matrix H appearing in equation 2.2 is a preconditioning imaturther reference on the matrix
H can be found in [6] and [7].

As a result we then form the convergent iteratiequence for the linear system defined by the
equation

Hs™ =(H - A)s™ +b , (m=0,1, 2,..,i=1,2,...,.) (2.3)
Where a convergent sequen@“’}:’;z0 of vector iterates can be constructed providedilegiy
conditions for the matrix A are fulfilled.

Equation 2.3 usually lead to various matrix spigt[8] namely, taking:
H =1 = the Richardson method.

H =D = the block Jacobi preconditioner

H :i(lD—Lj(lD‘lj(iD—Uj:the symmetric  successive  over relaxation
2-w\ w w w
preconditioner

H =(D-al)= the SOR preconditioner

Because equation 2.1 is a stationary matrix itegathethod convergence will be enhanced the
faster the producH A approximates identity matrix. Following this dission there holds:
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If the linear backward SOR method as a reachablis $@wver computable at what iterative point is
it equal to outer computable Quadratic Backward S@©&hod in the chain reachable set? This
inspires the following theorem.

Theorem 2.1,[9]. "It is possible to compute lowagproximations to the reachable set of a lower-
semi-continuous system, and outer approximatioth& chain-reachable set of an upper semi-
continuous system if this set is compact. It is asgble to compute arbitrary —precision
approximations to the reachable set of a continsystem if the closure of reachable set does not
equal the chain reachable set.”

We situate theorem 2.1 with well known [3] Haharch extension theorem which relates that: if
E O R" is a Hausdorff locally convex space aBg be a linear subspace of E, then any continuous
linear functional onE, has a continuous linear extension to all of E jgled that non zero
functional of equation 1.1 is not exotic.

The concept ofg-chain is now defined which relates that (K,d) is a metric space and
f:X - X is a multivalued map, a sequence of poirisx,,...,x, is an &-chain if there exist

S,,S,,....s, 0 X with s, 0 f(x) such thatl(s,,,x,,)<& for i=0,1,...,n-1. Thus a point x is chain
reachable fromX, if there is ane -chain from X, toX g >0. This is the fulcrum in which the
equation 2.4 is built.

To steer our discussion in the right senses, thedmuiic functional iteration [10] for which
guadratic SOR method is applicable is now constdiot the form:

s™ =G*" +Ge+c, (M=01,...,i =12......) e

Equation 2.4 is a stationary one point method witluble over head cost. Practically, we now
present the application of stated method as pramisest consider the well known linear backward
SOR method which is in the form:

i-1 n

5™ :aﬂ[bl -2as" - Zajsﬁmﬂ)}(l—wk)s(m% (M=0L...Ji =120, k= 12...,)
ii j=1 j=i+1

(2.5)

In matrix notation, this equation 2.5 will takestform:
s™) =(D+ ) (1-w)D -l ))s™ +(D+ )" ab (2.6)

Because of equation 2.6 we reformulate equation 2.4 for the quadrateardc®OR method and it
will be given by the following equation

s™) = ((D+ D) * (1~ @)D - ) ™ + (D + ) ({1~ @)D - b )(D + &l ) b, (M= 0L....)
(2.7)

The point Jacobi iteration matrix in which method 2.5 subssrilhas eigenvalues given
by p(D*(L+U))<1, =|G|< p(G)+e. Thus by a well known theorertim (HG”‘H) = p(G).

We move to compare the rate of convergence of the linear and qudreitieard SOR iteration
matrices as they appeared in equations 2.6 and 2.7 respectivelyl,Lahd [J, be two nxnreal
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matrices which correspond respectively to linead gonadratic backward SOR iteration matrices,
see e.g., [6] and[11]. We assume that there éxistence an integer m for whifh | <1. We then

define that

1 o
R(DT):—In[G‘D{”H)m}:—Inw (2.9)
is the average rate of convergence for m iteratafriee matrix(J,. Now assuming by computation
that R(Dg“)< R(D{“) then O, will be [6,7] considered iteratively faster for terations thanl, with

the same limit poing .Further reference can be found in [1] and [14$ddl on definition of
Q - factors. The R(O™) can be estimated by the Power method.

We measure average reduction factor per iterdtiothe m iterations in the successive error norms
by the quantity which is defined as

a{”e““)”m ,m=0,1,2,..., (2.10)

|

The term e, =s™-s™ is well defined. The expressi®{d") is bounded by a factor

USHDmH_m :e‘R(Dm) provide(ﬂDmH <1.lt is the exponential decay rate for a sharp ufgmemd for
the average reduction factor per iteration. The number of iterations requirededuce the norm

of the initial errore, by a factors is defined to b&\,, = (R(D"‘))_l and o™ <p™ always for any
convergent SOR method [6].Because of high costslved in terms of arithmetic calculations in
obtainingd™, the use of estimate for asymptotic convergende m@iven by the relation
RO =lim R,(0)=-logp(0) for a non symmetric matrix may be advantageous.Same

procedure applies to a problem leading to a symmetrmatrix  with

R,(O) = —%IogHDmH2 =-log ,o(D). (2.11)

The stopping criterion for termination of iterativeethods adopted in terms of relative residual is
r =b - Ax for sufficiently small enough. As a test condition we noted that

M <7 g =x¥-xtVk=12 ..

Irol

(3
. € r
wherer =tol the tolerance level the solution can allow and Hs K(A)M
&

Irol|

Nevertheless, if we ignore the extra computational cost in the cofiregatuating quadratic

functional iteration per step for method 2.7 which was derived framateop 2.4 , and, instead,
taking into consideration the gains in terms of finer topoldggenerates than that of linear
backward SOR method, it can be analogous to [12] that theaitabackward SOR method is
faster than the linear SOR method as attested to in the presentedlfigusection 4.We hope to
present the analysis in a forth coming paper.
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RESULT AND DISCUSSION
Theconstruction of « for SOR method And ConvergenceAnalysis

The theoretical determination @f can be found in [6], [7]). For easy accessibiity review here
theoretical determination af as a crucial step in the implementation of theediesd methods. Let
the iteration matrix for SOR in the determinatidnco be denoted byl .Then we set as

0, =(1 —aD L) (1- ) + D) (3.1)

The open set for spectrum @ is described by the relation\{p(0,)} such thatl -0, #0 for
which any« [0 (0,2) can be detailed. This is more so as the{4gt being the eigenvalues of SOR

iteration matrix for whicrhillﬁi :‘del((l—a))l +aD‘1U)‘ =[-df".

Since|A|z[L-dd, it holds thafl - ¢j <1= 0 < w< 2. We derive the value of as follows.

The optimal relaxation parameter in the classi€@RSheory is derived as follows:

The characteristic equation for the iteration nxafior the SOR is computed as

Det (A1 - (I ~aD L)1~ @)l +aDU))=0 (3.2)
Since defl —al)=1 for every value of., we may rewrite equation 3.2 in the form

det(Al - el - (1- w)l —aJ) =det((A + w-2)l = el - ).

In matrix notation it is given by

W+w-a, -am, .. o8,
- A +w-1

By (A +w-1)a, @By | 3:3)
_/10.&”1 _Aa'anZ"' _Aaan,n—l (A+a)_1)an,n

In the sense of [6 and 7] ,the Jacobi iterationrixat = D*(L +U) is a crucial factor for
determination ofe. . For this, we define

(00)., ) =(p"(p-2"(ca, -1)) (3.4)

The term p(J) is the spectral radius of associated Jacobi mafiws for p=2, the matrix J is
consistently weakly cyclic of index 2 with real eityalues whose unique positive root @fin
equation 3.4 is given to be

-2 (3.5)

“= 1+./1- p*(J)

The corresponding asymptotic convergence factor is
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o, )2 a9

Numerical Results

The sample numerical problem is taking from [13]:

3x, —cosx,x;)—05=0
f(x) =1x2 -81(x, + 0.1)* +sinx, + 106=0

107-3 _

e’ +20x, + 0

x = (@ x© x®)= (01,01 - 01)

Let m be the inner number of iterations requiredtf@ linear backward SOR method to attain its
accuracy when tolerance for Newton iteration is (eeé Table 1).

Tolerance for the outer iteration (Newton iterajioras fixed to belx10™ while allowing variation
for tolerance in the inner iteration (Backward SQRgthods), it was observed that at tolerance

value of10™, the results are the same for both linear Back&®& and quadratic Backward SOR
methods. This happened at the fifth successivatiter for linear Backward SOR method to attain

the same accuracy of tolerancel®™ when it was at the third successive iterationdfoadratic
Backward SOR to attain the same toleranc&0f.

As for outer iteration (the Newton iteration) ,tieal results were obtained for both methods which
use Newton method to approximate the zerds(gf=0at the third iteration. The Tables 1 and 2

below explain further.

Table 1 showing numerical results.

TOL Linear Backward SOR M Quadratic Backward M
SOR

10°° 0.50000000000705 1 0.50000000000708 1
0000002441339 0.00000000080787
-0.52359846437847 -0.52359877498707

10°® 0.50000000000708 2 0.50000000000708 1
0.00000000080736 0.00000000080736
-0.52359877498722 -0.52359877498722

10°8 0.50000000000708 3 0.50000000000708 2
0.00000000077583 0.00000000077579
-0.52359877557722 -0.52359877557801
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107 0.50000000000708 5 0.50000000000708 3
0.00000000077579 0.00000000077579
-0.52359877557801 -0.52359877557801

Table 2 showing number of iterations versus Tol.
Linear Backward Newton Tol. Quadratic Backward
SOR SOR
M SOR M
K K

1 3 10 10° 1 3

2 3 10 10°° 1 3

2 3 10 107 1 3

3 3 10 10°® 2 3

3 3 10 107° 2 3

3 3 10 107 2 3

S 3 10 10 3 3

Fig 1 below shows graphical representation of tol against number of iterations.

tolerance (tol)
3

Figure 1
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~——
~—
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=== Quadratic Backward SOR

=—— Linear Backward SOR —’%

No of iteration
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CONCLUSION

The paper presented contraction mappings for batikward linear and quadratic SOR methods
feasible in Newton operator in real floating paamithmetic to approximate the desired solution to
nonlinear system of equation. It was discovered dgoadratic Backward SOR method which uses
Newton operator is not only finer in topology bisaafaster than the Classical Linear Backward
SOR method which also uses Newton operator forsrae purpose to approximate solution to
nonlinear system of equation. This was done bytiptptvalues of error per step (tolerance) against
number of iterations as demonstrated in Figure dvebThe computed results are displayed in
Tables 1 and 2 for further illustration. Let usdahote that the quadratic Backward SOR method
converges if and only if its Linear Backward SORtimoel converges. The number of inner iteration
at which Linear Backward SOR method equalled tmerinteration for Quadratic Backward SOR
iteration formed the peak of our study, hence thenen Chain-reachable mapping for the two
different SOR methods. The significance of the gtadn be applied in Tidal Ocean waves or
Tsunami waves, a significant branch of hydrodynamic Water Mechanics Engineering where
linearization through discretization of Partial férential equation to linear system is imperatige a
a solution process other that method of Laplagestocam. The proof of this will form a major part
of forth coming publication as a follow up to thgaper. The presented results for the two methods
in floating point arithmetic are in close agreementh results earlier obtained in [13] where
interval Guass-Siedel arithmetic operations werplieg. In [13] for instance, we noted that
accelerating interval operations by Sucessive @sfaation method was not worth the trouble so
its implementation in the interval counterpart veasefully ignored at that time. It is available in
Selected INT-LAB.Ref , www.ti3.tu-harburg.de/rummlab/INTLABref.pdf .Further reference to
[13] can be found imiteseerx.ist.psu.edu . If we neglect extra work involved in executing Qretct
Backward SOR method the proposed approach studige ipaper is worth the trouble.
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